Statistic Analysis of Millions of Digital Photos

Dietmar Wueller^a, Reiner Fageth^b ^aImage Engineering Dietmar Wueller, Augustinusstr 9D, 50226 Frechen, Germany ^bCeWe Color AG, Meerweg 30-32, 26133 Oldenburg, Germany

ABSTRACT

The analysis of images has always been an important aspect in the quality enhancement of photographs and photographic equipment. Due to the lack of meta data it was mostly limited to images taken by experts under predefined conditions and the analysis was also done by experts or required psychophysical tests.

With digital photography and the EXIF¹ meta data stored in the images, a lot of information can be gained from a semiautomatic or automatic image analysis if one has access to a large number of images. Although home printing is becoming more and more popular, the European market still has a few photofinishing companies who have access to a large number of images. All printed images are stored for a certain period of time adding up to several million images on servers every day.

We have utilized the images to answer numerous questions and think that these answers are useful for increasing image quality by optimizing the image processing algorithms. Test methods can be modified to fit typical user conditions and future developments can be pointed towards ideal directions.

Keywords: Image Quality, Exposure Value, EXIF, Meta Data, Image Analysis

1. INTRODUCTION

In November 2007, CeWe Color had access to around 4.8 million JPEG images at the stage in which they were sent to the photofinishing company by their customers. The origin of each single image is not known. From experience and from the analysis of the Meta data it is known, however that a large number were taken by digital still cameras. A small number were taken with cell phone cameras, that in many cases do not use the Exif header, and another unknown number were scanned from negatives by the customers. From past experience it is known that most of the images taken with a digital camera are the original images without any post processing. The number of JPEG images originating from digital SLRs in this study is negligible.

The easiest analysis is that of the Exif Meta data itself. A database was filled with the values found in the different tags and the appearance of a specific value was counted for each tag.

Some of the questions asked by the experts, for example: "is the world really gray", could only be answered using image analysis software which evaluated each pixel in every single image. To ensure an analysis in a reasonable amount of time, it was necessary to keep the evaluation algorithms as simple as possible.

A few questions, such as categorizing the images, required a visual analysis. Since this would have been impossible with the total number of images, a statistic selection of 10.000 images was used to collect the presented data.

After an intensive discussion among the authors and numerous experts, the following questions appeared to be the most interesting ones that were able to be answered by the current study:

- 1. How many images have embedded EXIF data?
- 2. Which Exif tags are used how often?
- 3. How many images consist of how many pixels?
- 4. How many images were shot at which ISO level?
- 5. What is the distribution among the different focal lengths?

- 6. How often was the flash fired?
- 7. Sorting the images by exposure levels.
- 8. What is the average compression rate?
- 9. Are there images that already include GPS information?
- 10. How many images were shot at which white balance setting?
- 11. Is the real world really gray or what is the average color?
- 12. What is the average color in a daylight and in a tungsten image?
- 13. How many images have a dominant color?
- 14. How often do images contain colors at the border of the sRGB color space?
- 15. How many images are under or overexposed?
- 16. Sorting the images by typical scene types.

Questions 1 - 10 could be answered using the Exif Analysis. Questions 11 - 15 required an image analysis and question number 16 could only be answered using visual inspection.

Another interesting question was the long-term validity of answers provided by these questions. For some of the questions, such as the sorting by scenes or average color, the results provide an answer at least for the next couple of years. The answer to the average pixel count however represents the actual situation, but is expected to change over time due to technological changes in future digital cameras.

2. EXIF ANALYSIS

The following answers are based on analysis of the Exif Meta data.

2.1 How many images have embedded Exif data?

How many images contain Exif information	Images	Percent
Evaluated images	4.788.645	
Images containing Exif information		
(ISO tag or camera manufacturer tag)	3.447.579	72,0
Images without Exif information		
(no ISO tag and no camera manufacturer tag)	1.341.066	28,0

The presence of Exif information was analyzed by looking into the manufacturer and the ISO tag. If one of them was filled with valid information, the image was rated as one with Exif information.

For the scanned images we did not expect Exif data, although an indication that these images were scans from negatives or pictures would sometimes be helpful. The camera modules of many cell phones also do not provide Exif data. Some manufacturers have not realized how important Exif information can be for archiving and support purposes.

2.2 Which Exif tags are used how often?

Which Exif tags are used how often?	Images	Percent
Image with Exif information	3.447.579	
Exif version	3.430.131	99,5
Camera make	3.402.731	98,7
Camera model	3.400.491	98,6
Camera software	1.806.142	52,4
Date time	3.413.654	99,0
Width	3.393.993	98,4
Height	3.393.993	98,4
Flash used	3.446.694	100,0
Metering mode	3.334.693	96,7
Light source	2.029.204	58,9
Focal length	3.256.955	94,5
Exposure time	3.338.908	96,8
Exposure program	2.436.825	70,7
Exposure Bias Value	3.357.798	97,4
Fnumber	3.287.745	95,4
Max Aperture Value	3.087.022	89,5
ISO	2.386.274	69,2
Orientation	2.984.946	86,6

Every image that had a value in the selected tag was counted regardless of the value itself. The pixel count evaluation for example revealed afterwards that some images do not have a meaningful value in that specific tag.

Some tags are used on a regular basis, i.e. the "flash used" tag. Others, i.e. "ISO speed" and "light source", are not used that often. The reason may be a fixed setting for the specific value in that camera or the manufacturer did not want to include this value in the tag for whatever reason. The light source, for example cannot always be estimated from the white balance setting, furthermore only a few cameras are able to provide GPS information.

How many images consist of how many		
pixels?	Images	Percent
Images with width and height information	3.392.080	
1mio	332.142	9,8
1mio - 2mio	634.649	18,7
2mio - 3mio	83.344	2,5
3mio - 4mio	1.032.470	30,4
4mio - 5mio	310.559	9,2
5mio - 6mio	577.123	17,0
6mio - 7mio	118.976	3,5
7mio - 8mio	228.100	6,7
8mio - 9mio	12.923	0,4
9mio - 10mio	20.210	0,6
10mio - 11mio	34.789	1,0
> 11 mio	6.795	0,2

2.3 How many images consist of how many pixels?

The pixel count analysis is based on the images with a valid width and height value and is a snap shot of the situation in November 2007. It is interesting to see that the 8 to 12 Megapixel images still represent a minority among the images taken. Do many consumers switch their cameras to lower pixel counts, or are there only a few cameras with high pixel counts used by customers at this time? A question that remains open.

2.4 How many images were shot at which ISO level?

How many images were shot at whicl	h		
ISO level?		Images	Percent
Total number of images with ISO tag		2.386.274	
	50	269.753	11,3
	64	152.198	6,4
	70	11.217	0,5
	80	252.732	10,6
	100	827.059	34,7
	125	69.983	2,9
	128	12.953	0,5
	140	51.193	2,1
	141	9.815	0,4
	160	95.797	4,0
	200	225.671	9,5
	250	25.332	1,1
	320	42.836	1,8
	400	152.043	6,4
>	400	41.012	1,7
oth	ners	146.680	6,1

Sixty-five percent of the images were taken at an ISO level of 100 and below. The analysis of this tag has to be viewed in combination with the flash used and the exposure level analysis. With a 46% percent "flash fired" rate and 68% being portrait images, the light level is in many cases high enough to use ISO levels of 100 and below. This is essential because many of today's consumer cameras need low sensitivity levels to provide low noise images or at least low noise reduction levels.

2.5	What	is the	distribution	among the	different	focal	lengths?

What is the distribution among the different focal lengths?	Images	Percent
Number of evaluated images		
(with focal length tag)	1.755.360	
<4mm	15.039	0,9
4mm - 5mm	146.352	8,3
5mm - 6mm	400.919	22,8
6mm - 7mm	230.645	13,1
7mm - 8mm	201.180	11,5
8mm - 10mm	103.790	5,9
10mm - 15mm	167.251	9,5
15mm - 20mm	165.813	9,4
20mm - 50mm	214.185	12,2
50mm - 100mm	80.833	4,6
>100mm	29.353	1,7

By looking at the consumer cameras which were available over the last 5 years the average factor to determine the equivalent 35mm focal length can be estimated around 6 which represents a sensor diagonal of app. 7mm. This means around 50% of the images were shot at normal to slightly wide angle focal length.

2.6 How often was the flash fired?

How often was the flash fired?	Images	Percent
Images with Exif Meta data	3.446.694	
With flash	1.502.499	43,6
Without flash	1.944.195	56,4
No value in flash tag	885	0,0

How many images could have been taken without flash at higher ISO speed levels to provide more natural images can not be determined from this data.

2.7 Sorting the images by exposure levels.

Sorting the images by exposure levels.	Images	Percent
Number of evaluated images		
(with fnumber, speed and ISO tag)	908.989	
<6	13.434	1,5
68	72.917	8,0
810	260.402	28,6
1012	244.491	26,9
1214	217.178	23,9
1416	72.915	8,0
1618	20.384	2,2
>18	7.268	0,8

The exposure level² (not to be confused with the exposure index described in ISO 12232) could only be determined for images with a valid fnumber, exposure speed and ISO level tag.

Where the exposure level is:

$$2^{B} = \frac{f^{2}}{t} + \frac{actual \ sensitivity}{ISO \ 100} \tag{1}$$

with B = exposure value

Typical exposure levels:

Indoor with tungsten light	< 7
Outdoor, cloudy sky	7 – 11
Outdoor, sunny day	>11
Portrait with flash	≈10

2.8 What is the average compression rate?

What is the average compression rate?	Images	Percent
Total images with width and hight		
information	3.010.184	
ratio file size compressed / uncompressed		
<0,05	20.432	0,7
<0,1>0,05	51.987	1,7
<0,2>0,1	512.007	17,0
<0,3>0,2	981.372	32,6
<0,4>0,3	560.443	18,6
<0,5>0,4	626.390	20,8
<0,6>0,5	167.747	5,6
<0,7>0,6	64.726	2,2
<0,8>0,7	25.107	0,8
<1,1>0,8	20.405	0,7

To calculate the compression rate it was necessary to determine the uncompressed file size from the pixel count. The compression rate was calculated by dividing the size of the compressed file by the size of the uncompressed one. Images with a compression rate of more than 1,1 were excluded from the evaluation.

2.9 Are there images that already include GPS information?

Are there images that already include		
GPS information?	Images	Percent
Total number of images evaluated for GPS		
information	2.324.033	
Images with GPS information	13.355	0,6
Images without GPS information	2.310.678	99,4

Right now only a few cameras and mobile phones have an integrated GPS receiver. But there are ways to add GPS information to images by using an external sensor and software that compares time and position. A few digital SLRs also have an extra connector for GPS devices. Due to a timing issue this analysis was not done on the same image set as the others.

2.10 How many images were shot at which white balance setting?

How many images were shot at which			Percent of images with
white balance setting?	Images	Percent of total	defined setting
Total number of images with Exif data	3.393.853		
Daylight	39.457	1,2	70,4
Flash	7.692	0,2	13,7
Fluorescent	3.768	0,1	6,7
Multisegment (?)	20	0,0	
Multispot (?)	10	0,0	
Std A (?)	753	0,0	
Std B (?)	20	0,0	
Std C (?)	10	0,0	
Tungsten	5.098	0,2	9,1
Undefined	1.972.496	58,1	
No value	1.364.529	40,2	

Most of the images were taken using auto white balancing. In this case the cameras do not write a value or the "undefined" value into the tag.

3. EVALUATION BASED ON A PIXEL BY PIXEL IMAGE ANALYSIS

The analysis was performed using software that was created by the CeWe Color team for studies like this. Each pixel of every image is evaluated for specific characteristics. To ensure a good performance the algorithms used have to be as simple as possible.

3.1 Is the real world really gray or what is the average color?

	Average	Average value for	Average value for	Average value for
	digital value	rea	green	blue
Average value for all 4.8 million images	109,27	115,84	109,86	102,11
Average value of images with Exif tag				
daylight	113,35	118,21	114,18	107,64
Average value of images with Exif tag				
tungsten	94,81	102,12	93,79	88,51
Average value of images with flash on	100,91	112,45	99,81	90,46
Average value of images with flash off	113,92	117,73	115,45	108,58

The average values were determined by simply averaging all values for all channels or the values of a selected channel.

These values show that the gray world is not really gray. From the fact that 68 % of the images taken are portrait images, a slightly higher red level is something that can be expected. It is also interesting that the tungsten images are significantly darker although they are not underexposed.

3.2 How many images have a dominant color?

How many images have a dominant		
color?	Images	Percent
Number of evaluated images	3.258.560	
Red	404.820	12,4
Orange	238.755	7,3
Yellow	98.563	3,0
Green	14.889	0,5
Cyan	46.221	1,4
Blue	30.852	0,9
Magenta	8.588	0,3
No dominant color	2.415.872	74,1

For determining color dominance it was necessary to define simple analysis methods based on digital values without color conversions. The definitions stated below were made empirically by the authors.

Images with a dominant color are defined as images where more than 60% of the pixels fulfill the following requirements:

Red: green and blue have the same digital value level (+/- 20%) and the red value is more than 20% higher than green.

Orange: the red value is more than 20% higher than green and the blue value is more than 20% lower than green.

Yellow: green and red have the same digital value level (+/- 20%), green is greater than 119 and the blue value is more than 20% lower than green.

Green: the blue and red values are more than 20% lower than green.

Cyan: green and blue have the same digital value level (+/- 20%) and the red value is more than 20% lower than green.

Blue: the green and red values are more than 20% lower than blue.

Magenta: the blue and red values are more than 20% higher than green.

3.3 How often do images contain colors at the border of the sRGB color space?

How often do images contain colors at		
the border of the sRGB color space?	Images	Percent
Number of evaluated images	3.336.683	
Images that contain colors at the border of		
the sRGB color space	2.934.623	88,0
Overexposed images	42.441	1,3
Underexposed images	32.507	1,0

Border images: more than 20 pixels with one or two channels at digital value of 255.

Overexposed: > 20% white pixel (three channels at 255).

Underexposed: no more than 100 pixel with luminance value > 180 with luminance L = 0,3red + 0,6green + 0,1blue.

4. VISUAL CHARACTERIZATION OF IMAGES

4.1 Sorting the images by typical scene types.

Images used to categorize	10.000	
Group portraits	3.628	36.3
Children	1.688	16,9
Single Portraits	1.510	15,1
Landscape	553	5,5
Architecture	541	5,4
Urban areas	340	3,4
Animals	328	3,3
Plants	309	3,1
Sports	186	1,9
Indoor	151	1,5
Food	81	0,8
Night images	28	0,3
Others	657	6,6
thereof: 156 signs, 142 boats, 107 cars		
Overexposed (visual impression)	552	5,5
Underexposed (visual impression)	98	1,0

Each image was sorted into one single category (except the exposure check). The portraits were counted as such no matter if they were shot indoor or outdoor. This explains the relatively low number of Indoor shots among the total number of images.

5. CONCLUSION

The collected data lead to some results that are important to know. The grey world assumption for example may be true for a selection of images that represent numerous different scene types. But since 68% of the images are portrait images the average value is shifted to the red what is also represented in the color dominance evaluation in clause 3.2.

From our experience we see that most cameras can handle typical scenes at exposure values of 8 and higher. But the 10% shot at lower light levels and those images that might have been shot without flash at a higher ISO level if the cameras would perform better make the difference between a standard and a good camera.

For future analysis it might be interesting to look into some of the detail e.g the exposure level for images without flash and those shot at tungsten light etc.

Of course the automatic and semi automatic image statistics can not replace other methods especially the psychophysical analysis for image quality evaluation but it provides an important piece of information that helps to improve the quality of future cameras.

ACKNOWLEDGMENT

The authors would especially like to thank the CeWe Color team and Carina Matzky for their support. Special thanks also to Henning Hoefel for his help in collecting the data.

REFERENCES

- ¹ JEITA, *Exif 2.2*, <u>http://www.exif.org/specifications.html</u>.
- ² DIN 19010 Lichtelektrische Belichtungsmesser, Beuth Verlag, Berlin