
Quantifizierung von Rauschen basierend auf zwei 

visuellen Modellansätze.

Diplomarbeit an der Fachhochschule Köln

Fachbereich Photoingenieurswesen und Medientechnik

vorgelegt von

Johanna Kleinmann

Matr.-Nr. 11034000

Referent

Prof. Dr. Gregor Fischer

Koreferent

Dipl. Ing. Dietmar Wüller, Image Engineering, Frechen

Köln, 15ten August 2006



Quantification of noise based on two visual Models

Thesis of the Department of 

Imaging Science and Media Technology 

University of Applied Sciences of Cologne

Author

Johanna Kleinmann

Matr.-Nr. 11034000

First Reviewer

Prof. Dr. Gregor Fischer

Second Reviewer

Dipl.-Ing. Dietmar Wüller, Image Engineering, Frechen

Cologne, 15th of August 2006



Table of content

Table of content

 1 .Chapter 1: Different Methods to measure and 

quantify noise....................................................................... 1
 1.1 Setting the Context........................................................................................ 1

 1.1.1 Noise Definition....................................................................................... 1

 1.1.2 Signal to Noise Ratio Measurement Method........................................... 1

 1.1.3 Alternative Approach: CIELab and CIELuv Colour Space..................... 5

 1.1.3.1 The Actual Perception of Noise.................................................................. 5

 1.1.3.2 Noise seen as a Colour Difference.............................................................. 5

 1.2 Description of the Experiment and Development of a new Approach..... 8

 1.2.1 Shiraz Experiment.................................................................................... 8

 1.2.2 Thesis: the Threshold Images should get the same Noise Value............. 9

 1.2.3 Overview of the Thesis...........................................................................10

 2 .Chapter2: The Human Visual System and the Human 

Visual Model...................................................................... 11
 2.1 Definition of Colour.....................................................................................11

 2.2 Eye's Light Sensitivity System: the Photoreceptors................................. 12

 2.2.1 Sensitivity of the Photoreceptors............................................................12

 2.2.2 Chromatic Adaptation............................................................................ 13

 2.2.3 Mosaic and Spatial Arrangement of the Photoreceptors........................ 14

 2.3 Visual Signal Processing..............................................................................15

 2.3.1 Colour Sensation requires an Interaction between the Photoreceptors.. 15

 2.3.2 Structure of the Photoreceptors and Neurons Interconnections............. 16

 2.3.3 Distribution of the Nerves' Fibres throughout the Photoreceptors......... 17

 2.3.4 Processing of the Signals: Opponent Colour Signals.............................17

I



Table of content

 2.4 Spatial Properties of Colour Vision: the Contrast Sensitivity Function 19

 2.4.1 Contrast Sensitivity Function and Spatial Frequency............................ 19

 2.4.2 Restrictions of the Model of the Contrast Sensitivity Function............. 20

 2.4.3 Achromatic or Luminance Contrast Sensitivity Function......................21

 2.4.4 Chromatic Contrast Sensitivity Function............................................... 22

 2.5 Human Visual Model and its Algorithm................................................... 23

 2.5.1 Human Visual Model............................................................................. 23

 2.5.2 Algorithm of the Human Visual System................................................ 25

 3 .Chapter 3:Visual Noise Measurements Model.......... 34
 3.1 Visual Noise Value Formula....................................................................... 34

 3.1.1 The Formula........................................................................................... 34

 3.1.1.1 The Formula from the CIELuv1976 Colour Space...................................34

 3.1.1.2 The Formula from the CIELab1976 Colour Space................................... 35

 3.1.1.3 CIELuv1976 vs. CIELab1976...................................................................36

 3.2 Results of the Visual Noise Measurement Model......................................38

 3.2.1 Noise Evaluation for Colour Difference in the Luminance Channel..... 40

 3.2.2 Noise Evaluation for Colour Difference in the Chroma Channel.......... 42

 3.2.3 Noise Evaluation for Colour Difference in the Hue Channel................ 46

 3.2.4 First Conclusions....................................................................................47

 3.3 Praxis oriented Tests of the Visual Noise Measurement Model.............. 50

 3.3.1 Test of the two Grey Patches..................................................................50

 3.3.2 Example of the Visual Noise Measurement Model used in the Image 

Engineering Analyser®.................................................................................... 51

 3.3.2.1 OECF20-Chart photographed with the Camera Canon ix65 at sensitivity 

of 100ISO and 400ISO...........................................................................................52

 3.3.2.2 Brief analysis.............................................................................................54

II



Table of content

 4 .Chapter 4: S-CIELabDE2000 Model..........................56
 4.1 S-CIELabDE2000 Formula: Comparison of a "Noisy" Image with a 

"Noise-free" Image.............................................................................................56

 4.2 Investigation of the S-CIELabDE2000 Model.......................................... 63

 4.2.1 Investigation with Threshold Images with rectangular spatial Patterns 

with different Contrast......................................................................................63

 4.2.1.1 Noise Input as a Colour difference in the Luminance Channel................ 64

 4.2.1.2 Noise Input as Colour Difference in the Chroma Channel....................... 65

 4.2.1.3 Noise Input as Colour Difference in the Hue Channel..............................66

 4.2.2 Further Investigation: Colour Difference in function of the Contrast and 

the Frequency Patterns..................................................................................... 68

 4.3 Investigation of the Colour Difference for Uniform Patches...................69

 4.3.1 Investigation with Threshold Images..................................................... 69

 4.3.2 Brief conclusion..................................................................................... 70

 5 .Chapter 5: Noise Scaling as a Description of the Eye 

Sensitivity........................................................................... 71
 5.1 Visual Noise as a Function of the Noise Input...........................................71

 5.1.1 Visual Noise Scaling along the Luminance Channel............................. 72

 5.1.2 Visual Noise Scaling along the Chroma Channel.................................. 74

 5.1.3 Visual Noise Scaling along the Hue Channel........................................ 77

 5.1.4 Comparing Noise Scaling and Facility to determine Threshold Images79

 5.2 Noise Scaling between the Chroma and Hue Noise Input........................81

 5.3 Brief conclusion............................................................................................84

III



Table of content

 6 .Chapter 6: Conclusion................................................. 85
 6.1 Quantification of noise: The Stand of the Research and the new 

Approach: an Algorithm describing the Human Visual System....................85

 6.1.1 Stand of the Research............................................................................. 85

 6.1.2 The new Approach: an Algorithm describing the Human Visual System

.......................................................................................................................... 86

 6.2 Results of the Noise Quantification with the two Models........................ 86

 6.2.1 Quantification of Noise with the Visual Noise Measurement Model.... 87

 6.2.1.1 Tools of the Visual Noise Measurement Model........................................87

 6.2.1.2 Evaluation of the Threshold Images with the Visual Noise Measurement 

Model..................................................................................................................... 87

 6.2.2 Noise Quantification with the S-CIELabDE2000 Model.......................88

 6.2.2.1 Tool of the S-CIELabDE2000 Model....................................................... 88

 6.2.2.2 Evaluation of the Threshold images with the S-CIElabDE200 Model..... 88

 6.2.3 Conclusion for both Models................................................................... 89

 6.3 Does the human visual Algorithm used match the Eye's Sensitivity?.... 89

 6.3.1 Eye's Sensitivity between Colours in term of Luminance, Chroma, and 

Hue................................................................................................................... 89

 6.3.2 Eye's Sensitivity between Luminance, Chroma and Hue in term of 

Colour...............................................................................................................90

 6.3.3 Brief conclusion..................................................................................... 90

 6.4 Improvement of the Measurements and of the Method...........................91

 6.4.1 Improvement of the Measurements........................................................91

 6.4.2 Improvement of the Human Visual Algorithm...................................... 92

 7 .Bibliography..................................................................95

 8 .Declaration.................................................................... 98

 9 .Appendix.......................................................................99

IV



Chapter 1: Different Methods to measure and quantify noise

 1 .Chapter 1: Different Methods to measure and quantify noise

 1.1 Setting the Context

 1.1.1 Noise Definition

Colour noise is a current phenomenon in digital image technology. It has many sources [10 

pp18-19]  [11  pp23-24],  and  despite  the  steady  improvement  of  digital  imaging 

technology,  noise  can  not  be  totally  eradicated  because  of  its  inherent  nature  and  its 

statistical, random characteristics.

According to the normative part ISO 15739:2002(E) [16], noise is defined as an "unwanted 

variations in the response of an imaging system." It means that the pixel value is not the 

one it  should be according to the ambient or incident light, the object colours and the 

camera settings. Consequently colour noise artefacts are image errors that can be observed 

as brightness or colour changes. [11 p26].

 1.1.2 Signal to Noise Ratio Measurement Method

Noise can be measured with the signal to noise ratio[16]:

The signal to noise ratio is determined from the data captured from the uniform density 

patches of block 13 of the OECF-chart (refer to figure 3.01 [paragraph 3.3.2]) defined by 

the ISO-standard (in the normative part of ISO 15739:2002(E) [16] in Annex A). Lighted 

under given and specific conditions, the middle grey patch 13b should have a density of 

0,9 and refers to the “18% signal level”.
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Chapter 1: Different Methods to measure and quantify noise

The signal to noise ratio is determined by [16]:

SNR=
LSat⋅0,18⋅incremental gain

total noise
(1.01)

– Where LSat is the target luminance that gives the maximum unclipped output from the 

camera (for an eight bit system, this is 255) [16].

– The 0,18 is the 18% reflectance of the target at a density of 0,9, with respect to a 

maximum level of 140% (predefined light condition) [16].

– The incremental gain is the first derivative of the OECF, determined by the method in 

ISO 14524 [16].

– The digital noise is calculated from the standard deviations of the pixel values over the 

uniform patch. [16]

In practice it can be observed that the more signal, the more noise. But the signal amplitude 

increases quicker than the noise amplitude, consequently the signal to noise ratio increases 

when the patches' density decreases.

Figure 1.03: Signal to noise ratio values of the patches of the OECF-20 chart photographed with the camera 

Canon® Ixus65   at a sensor sensitivity of 100ISO and 400ISO.  
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Chapter 1: Different Methods to measure and quantify noise

To characterise the noise behaviour of digital cameras, the ISO-standard has only set the 

signal  to  noise  ratio  of  the  middle-grey  patch  of  density  of  0,9  as  reference.  But  the 

quantification of noise with this method does not always accurately represent the visual 

impression of noise, as shown in the following example.

The  two  middle  grey  patches  of  density  0,9  of  the  test  chart  OECF20  have  been 

photographed  with  the  digital  still  camera:  Panasonic®  DMC-TZ1G  at  sensitivity  of 

100ISO (figure 1.01) and of 400ISO (figure 1.02).

Figure 1.01: Sensitivity of 100ISO Figure 1.02: Sensitivity of 400ISO

Looking  at  the  patches,  it  is  obvious  that  for  each  patch  the  appearance  of  noise  is 

different, the noise is from a different kind. At a sensor sensitivity of 100ISO, the noise is 

chromatic, with red and yellow appearance, and has coarse structures. At a sensitivity of 

400ISO, the noise is achromatic, since the grey colour differences seems to take place as 

luminance differences.

So in  comparing  both  patches,  it  is  clear  that  visually  it  is  the  patch  with  the  sensor 

sensitivity of 400ISO that it is the most distorted by noise and the most disturbing for the 

human eye. So in quantifying noise, we would expect that the noise value for the patch 

photographed at 400ISO would be greater than the noise value for the patch photographed 

at 100ISO. However, this is not the case when using the signal to noise ratio method: the 

signal to noise ratio values are the same for both patches: at 100ISO, the SNR is 27,9 and 

at 400ISO, the SNR is 29,1 (the signal to noise ratio being a linear function).
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Chapter 1: Different Methods to measure and quantify noise

The signal to noise ratio fails by quantifying the noise seen impression, because first of all, 

it does not take into account that noise can be from different kind: noise has many sources 

[10 pp18-19] [11 pp23-24], so it can have different appearances depending on the sensor 

characteristics  and  imaging  digital  processing.  Moreover  it  does  not  cover  the  whole 

dynamic range of the camera, if the lighter and darker patches were evaluated it could be 

shown, that the seen noise behaves differently over the densities.

Since  the  signal  to  noise  ratio  method  is  not  giving  satisfying  results  regarding  the 

expectations, other methods have to be investigated.

4



Chapter 1: Different Methods to measure and quantify noise

 1.1.3 Alternative Approach: CIELab and CIELuv Colour Space

 1.1.3.1 The Actual Perception of Noise

It  is well  documented that the human eye discriminates small differences in luminance 

more easily than in chroma, and that colour differences are more noticeable in uniform 

pattern  than  in  high  frequency  pattern.  This  suggests  that  the  eye  reacts  differently 

depending to the kind of noise: only luminance noise, colour noise, high or low frequency 

noise, and depending where the noise occurs:  uniform surface or complex pattern. The 

clarity of noise to observers depends on “the magnitude of the noise, the apparent tone of  

the area containing the noise, and the spatial frequency of the noise”. [16]

That is why the noise can not be described just as a physical grandeur, as the signal to 

noise ratio method does,  but it  should be described as a physiological one. Indeed the 

visual noise level can vary depending on the viewing distance, spatial frequency, density, 

colour and viewing conditions [16].

 1.1.3.2 Noise seen as a Colour Difference

Colour noise can be seen as a colour difference, since a pixel becomes "noisy" when it 

differs from the original colour it should be. So at first it could have been assumed to use 

the recommended CIE colour spaces for this purpose. Indeed, the CIE has been searching 

for a uniform colour space that would match the perception of the human visual system.

Two colour spaces should fulfil this requirement: CIEL*u*v* 1976 and the CIEL*a*b*. 

However,  as  it  is  explained  in  Robertson's  paper,  The  CIE  1976  Color-Difference 

Formulae [22], both colour spaces are not entirely uniform as they were supposed to be; 

they are only approximately uniform. Investigating their uniformity with the Munsell Color 

System and the MacAdam Ellipses would show interesting characteristics for each colour 

space.
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Chapter 1: Different Methods to measure and quantify noise

Figure 1.03: Munsell loci of constant hue and chroma 

plotted in the CIE 1976 a* b* diagram.

Figure  1.04:  Munsell  of  constant  hue  and  chroma 

plotted in the CIE 1976 u* v* diagram.

“Figure 1.03 and 1.04 show Munsell coordinates for value 5 plotted in the a*b* and u*v* 

diagrams respectively. Loci of constant hue and of constant chroma are shown. If either  

diagram provided uniform spacing of the Munsell system, these loci would be straight,  

equally spaced radial lines and concentric, perfect circles.”[22].  It  is clear that neither 

diagram is perfect in this respect, but the a*b* diagram is slightly better than the u*v* 

diagram.

Figure 1.05: Mac Adam Ellipses plotted in the CIE 

1976 a* b* diagram.

Figure 1.06:  Mac Adam Ellipses plotted in the CIE 

1976 u* v* diagram.
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Chapter 1: Different Methods to measure and quantify noise

The MacAdam ellipses are also used to test colour-difference formulae. “These are shown 

transformed to the a*b* and u*v* diagrams, respectively, in figure 1.05 and figure 1.06.  

The transformation was done in each case with the assumption that L*=50. If either space  

were perfectly uniform, the corresponding diagram would represent the ellipses as equal-

radius circles.” [22] Here again neither  diagram matches the conditions,  but  the u*v* 

diagram shows more ellipses that tend to circles than the a*b* diagram does [19].

So as the figures show, L*a*b* diagram performs slightly better when investigated with 

the Munsell  Color  System,  which  stands  for  bigger  colour  distance.  Alternatively,  the 

L*u*v* diagram shows more circle formed ellipses when investigated with the MacAdam 

ellipses, which stands for smaller, local distance.

The CIELab colour space may be appropriate to compare wide colour surfaces, but not to 

determine colour noise which is characterised in part by small and local structures. The 

CIEL*u*v*  colour  space,  taken  by  itself,  is  not  either  capable  to  give  a  reliable 

physiological quantisation of colour noise difference. So a new approach for the aimed 

purpose must be found.

According to these results, the colour difference formula CIELabDE has been repeatedly 

modified by the CIE over the years: 1976, 1994, 2000. But in the previous diploma thesis 

dealing  with  the  colour  noise  [11],  it  has  been  demonstrated  that  neither  of  the  the 

improved  CIELabDE  formulae  were  practicable  to  use  to  quantify  noise  in  a  visual 

manner. 

That is why a new approach has to be developed.
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Chapter 1: Different Methods to measure and quantify noise

 1.2 Description of the Experiment and Development of a new Approach

 1.2.1 Shiraz Experiment

In order to determine how the eye reacts  to noise for different frequency patterns and 

colours,  experiments on over 30 individuals  have been conducted with the help of the 

Shiraz  program.  This  software  written  by  Michael  Bantel  and  Jan  Fischer  [10] and 

expanded by Christina Simon and Nicole Kidawa  [11] can be used so that the viewing 

experiment takes place in front of the monitor.

Shiraz  first  permits  the  user  to  predefine  images  varying  in  colour,  vertical  square 

frequency patterns and contrast.  Then a  set  of  image is  generated adding noise to  the 

image. The digital noise input is a random pattern [10 p20 & 33] [11 p55] based on the 

theory of the statistical gauss function. However, the program always produces the same 

sequence of random numbers, so it is ensured that the noise input is the same for the same 

noise  setting  from one  experiment  to  another.  The  eye  identifies  colours  in  terms  of 

luminance,  chroma and hue.  Relying on this  eye's behaviour,  the noise input  varies in 

amplitude of either the luminance, chroma or hue channel [10 p21-22] [11p26]. The noise 

input  is  then  measured  as  a  colour  difference  ΔE.  The  maximum  noise  input  in  the 

luminance channel is ΔE=ΔL=10, in the chroma and hue channel it is ΔE=ΔC=Δh=15 [11 

p56].

For the specifically defined viewing conditions reported in the two former diploma thesis 

[11 p35], and [10 pp42-44] and in appendix A, the tested observers were asked to select 

the threshold image from the set of images with the just noticeable difference (JND) in 

terms of  noise.  This  has  be done for  a  variety  of  colours  and for  noise  input  in  each 

channel: luminance, chroma and hue. A threshold image is calculated as the mean value of 

the slider's setting over the number of the tested persons. Consequently, the experiment has 

to be executed over many persons in order to exclude any errors due to psychological 

attributes (e.g. pressure, imagination...) or vision deficiency (although it is assumed that all 

persons have normal vision).
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The experiment has been conducted in the context of the diploma work of Christina Simon 

and Nicole Kidawa for colour patches with frequency patterns, defined [11 pp40-44], and 

which results are reported [11 pp-103-110]. It has also been conducted for uniform colour 

patches, defined in the diploma thesis work of Michael Bantel and Jan Fischer [10 pp39-

41], but in the context of this diploma work (results for the threshold images reported in 

appendix A).

These  experiments  are  not  a  method to  quantify  noise,  but  permits  the  user  to  define 

threshold images, which are then used to investigate other approaches.

But from the results it can already be observed that for the noise input in the luminance 

channel, the measured colour difference ΔE of the threshold images is almost the same for 

the different colours. However, for noise input in the chroma or hue channel, the measured 

colour difference ΔE is varies greatly for the different tested colours. 

Nevertheless, the ΔE from the Shiraz noise settings will just serve as a measure of how 

much noise had to be put in. It does not serve as a visual quantification unit.

 1.2.2 Thesis: the Threshold Images should get the same Noise Value

The threshold images are defined for the just noticeable colour difference. So, because the 

eye perception is the same, a measuring method, which would quantify noise for matching 

the visual impression, would quantify these threshold images with the same values.

It has been demonstrated that neither the signal to noise ratio, nor the CIELabDE1976 [22], 

1994 [10] or 2000 [11], are able to quantify physiologically noise as a ratio or as a colour 

difference. As a result, other approach methods have to be developed which would fulfil 

the assumption.
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Chapter 1: Different Methods to measure and quantify noise

The two following models have been investigated:

- the model of visual noise measurement proposed by Hung et al (also as an annex in the 

ISO  15739:2002(E))  which  simulates  the  processing  of  human  vision  by  using  the 

opponent space and contrast sensitivity functions [17]. This uses the CIELuv1976 colour 

space for the determination of a so called visual noise value.

-  S-CIELabDE2000  colour  difference  model  proposed  by  Fairchild  et  al  [20] which 

simulates  human  vision  approximately  the  same  way  as  Hung  but  uses  an  image 

comparison afterwards based on CIELabDE2000.

Both are based on the cognition of the human visual system and both use a human visual 

algorithm, which tries to describe the visual recognition of colour by the human visual 

system.  After  the  image  data  has  been  filtered  with  the  algorithm,  the  visual  noise 

measurement model uses a weighted sum of the standard deviation along the L*, u* and v* 

axes of the CIELuv1976 colour space to evaluate the colour noise. The S-CIELabDE2000 

model processes a colour difference between a noise free image and a noisy image.

 1.2.3 Overview of the Thesis

In the second chapter the human visual system is presented in order to understand the 

human visual algorithm derived from it. The third chapter deals with the quantification of 

the threshold images with the visual noise measurement model, while the fourth chapter 

considers the S-CIELabDE2000 model. In the fifth chapter the precision of the algorithm 

used to describe the human visual system is evaluated by scaling the set of noisy images 

for different colours with the algorithm and comparing it  to the threshold images.  The 

comparison  between  the  two  models  and  a  conclusion  about  their  reliability  are  then 

presented in the sixth chapter.
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Chapter2: The Human Visual System and the Human Visual Model

 2 .Chapter2: The Human Visual System and the Human Visual 

Model

Since both visual models: Visual Noise Measurement and S-CIELabDE2000, are derived 

from  the  human  visual  function,  it  is  important  to  understand  the  basic  anatomy, 

physiology, and performance of the visual system.

 2.1 Definition of Colour

“Light is a term used to describe the range of wavelengths from 380nm to 780nm of the  

electromagnetic radiation spectrum to which the human visual system is sensitive” [26 

p4].

“Colour  is  an attribute  of  visual  sensation and is  not  a  physical  characteristic  of  an 

object.”  [26 p4]  The experience of colour occurs when light reflected from surfaces is 

observed, or when looking directly at the light sources. But colour does not occur only 

when focusing on the surface of the viewed object, but takes place as a mapping of the 

object on the brain. 

Actually, the light coming through the lens' eye, falls on the retina and stimulates the light 

sensitive cells.  Here the complex process of photo-transduction occurs: the energy of a 

photon  is  used  to  change  the  inherent  membrane  potential  of  the  photoreceptor.  This 

stimuli then travels through a series of neural relay cells via the nerves [4 p23]. The signal 

is  then  processed  by  neural  mechanisms  before  being  led  further  to  the  brain,  which 

produces the sensation of colour. “The term colour exists only relative to a living organism 

with light sensorial cell” [26 p5].
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Chapter2: The Human Visual System and the Human Visual Model

 2.2 Eye's Light Sensitivity System: the Photoreceptors

The light sensitive cells of the retina are the photoreceptors, rods and cones, that catch the 

photon of the light entering the eye and serve to transduce the information of the optical 

image into chemical and electrical signals [3 p4].

 2.2.1 Sensitivity of the Photoreceptors

Rods are highly sensitive to low luminance levels (scotopic vision:e.g., less than 1 cd/m², 

moonlight, dark room ), such that they can generate a detectable photocurrent response 

when they absorb just a single photon of light. Cones first respond to higher luminance 

levels (several cd/m²). At high luminance level (e.g.,  greater than 100 cd/m²), rods are 

saturated and only cones function (photopic vision). In the intermediate luminance levels, 

both rods and cones function and contribute to vision (mesopic vision) [3 p11] [4 p20].

Figure  2.01:  Broken  line:  the  spectral  sensitivity  of  the  eye  for  scotopic  (rod)  vision.  Full  lines:  spectral 

sensitivity curves of the three different types of cones: L = ρ, M = γ, and S = β, for photopic vision   [4 p21]  .  
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Chapter2: The Human Visual System and the Human Visual Model

Rods  and  cones  differ  in  their  spectral  sensitivities.  They  both  contain  different 

photosensitive pigment. There is only one type of rod photosensitive pigment, rhodopsin, 

with a spectral responsivity peak at approximately 510nm [4 p21]. There are three types of 

cone photosensitive pigment with different peak spectral responsivities : 560nm, 530nm, 

and 420nm properly and respectively referred to as L, M and S cones [3 p11], and [26 p5].

Since  there  is  only  one type of  rod cells,  rod vision or  scotopic  vision,  is  sometimes 

referred to as "monochromatic" vision. But there are three types of cones, each responding 

to  different  wavelength  ranges.  The  three  signals  are  then  processed  with  each  other, 

generating the sensation of colour.

 2.2.2 Chromatic Adaptation

Chromatic adaptation is observed by examining a white object, such as a piece of paper. 

Although observed under various light sources, the white paper keeps its white appearance. 

For instance, daylight is composed of more short-wavelength than fluorescent light, while 

incandescent light is made of more long-wavelength than fluorescent light. But the paper 

almost keeps its white appearance under the different light sources. This can be explained: 

the  S-cones  are  less  sensitive  under  daylight  to  balance  the  higher  amount  of  short-

wavelength. Conversely, the L-cones are less sensitive under incandescent light to balance 

the higher amount of long-wavelength [3 p28].

To resume, “chromatic adaptation is the independent sensitivity control of the three cone  

spectral  responsivity  curves,  that  compensate  changes  in  the  spectral  quality  of  

illumination”[5 p24].
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Chapter2: The Human Visual System and the Human Visual Model

 2.2.3 Mosaic and Spatial Arrangement of the Photoreceptors

Another important feature of the photoreceptors is their distribution in the retina. In the 

fovea, which is the area of sharpest vision, the receptors are only cones. Outside of this, 

there are more rods. The fovea covers 1 ½° diameter of the visual field, and lies 4° offset 

from one side of the optical axis. “The ratio of cones to rods varies continuously from all  

cones and no rods in the fovea to nearly all rods and very few cones beyond 40° from the  

visual axis”  [4 p20]. About 10° to the other side of the optical axis is an area with no 

photoreceptors at all: the  blind spot or  optical disk. This area has no sensitivity to light 

since the nerve fibres connecting the retina to the brain pass through the surface of the 

eyeball at this point [4 p20].

Moreover, the distribution also differs among the three cone receptors. The S cones are 

absent in the most central area of the fovea. Instead, they are concentrated in a ring around 

the fovea and sparely distributed on the retina. “There are far more L and M cones than S  

cones  and  there  are  approximately  twice  as  many  L  cones  as  M  cones:  the  relative  

population of the L:M:S cones are of the ratio 40:20:1” [3 p10]. In addition, the spacing 

between the S-cones is much larger than the spacing between the L and M cones.

Figure 2.03: Density of rods and cones across the retina. Note the high density of cones in the central rod-free 

macular region an the high density of rods away from the fovea   [9 p118].  
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The asymmetrical distribution among the cones and the larger spacing between S-cones 

can  be  explained.  The  eye  is  not  corrected  for  chromatic  aberration as  “it  cannot  

simultaneously focus sharply on the three regions of the spectrum” [4 p23]. The L and M 

peak wavelengths are closer together than M and S peaks are between one another. But still 

the eye best focuses light of around 560nm in wavelength. Both L and M-cones therefore 

detect images that are sharp. The S cones detects an image that is much more blurred, so it 

is not necessary to have a fine network of S cones. [4 p23].

Moreover the fovea is characterised by the yellow spot or macula lutea: pigments located 

on the cone axons that form a layer of fibres. Since light must pass through the fibres 

before reaching the cones,  “the fibres act as a short-wave filter, screening out the blue 

light”  [9 p117]. This improves visual acuity by decreasing the impact of the chromatic 

aberration of   the optical image projected on the retina [9 p117].

 2.3 Visual Signal Processing

 2.3.1 Colour Sensation requires an Interaction between the Photoreceptors

“A  given  photoreceptor  reacts  to  the  intensity  of  a  given  wavelength”  [26  p5]: an 

incandescent light of a certain intensity can have the same effect in a photoreceptor as a 

fluorescent light of a different intensity. This implies that a single photoreceptor can not 

detect  the colour  of  a  light  source. “Taken individually,  each  photoreceptor  is  colour  

blind” [26 p5]. To be able to distinguish a colour, the colour vision requires interactions of 

the three types of cones [26 p5].
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 2.3.2 Structure of the Photoreceptors and Neurons Interconnections

The retina  is  made of  several  layers  of  neural  cells. “There  is  first  a  vertical  signal  

processing taking place whereby photoreceptors are connected to bipolar cells, which are  

in turn connected to ganglion cells, which form the optic nerve”.[3 p6]. But a horizontal 

signal processing also occurs, “whereby the horizontal cells connect the photoreceptors  

and bipolar cells laterally to one another, and the amacrine cells, that connect bipolar 

cells and ganglion cells laterally to one another” [3 p6].

Figure 2.04: Schematic diagram of the “wiring” of cells in the human retina   [3 p7]  .  

The retina transmitted to the brain thanks the nerve cells the receipted signals, “which 

consist of sophisticated combinations of the receptor signals. Each synapse can perform a 

mathematical operation (add, subtract, multiply, divide) in addition to the amplification,  

gain control, and non-linearities that can occur within the neural cells” [3 p7]. The signals 

collected from 100 million photoreceptors is compressed to signals in one million nerve 

cells “without loss of visually meaningful data “[3 p7].
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 2.3.3 Distribution of the Nerves' Fibres throughout the Photoreceptors

There are far more rods than cones. There are around 100 million rods for every 5 million 

cones. So it could be assumed that rods sample the retinal image very finely. Yet visual 

acuity under scotopic viewing conditions is very poor compared to visual acuity under 

photopic conditions [6].

This can be explained by the different kind of connections of the rods and cones with the 

nerve fibres. “In the fovea, there are about the same number of nerve fibres as cones, but  

as  the  angle  from  the  visual  axis  increases,  the  number  of  nerve  fibres  decreases  

continuously until as many as several hundred rods and cones may be served by a single  

nerve fibre” [4 p20]. While this enhances sensitivity, this occurs at the expense of acuity.

 2.3.4 Processing of the Signals: Opponent Colour Signals

Before reaching the brain (visual cortex) to be analysed in a more complex way (edge 

detection, movement...), the colour information provided from the ganglion cells is not of 

trichromatic type (red, green, blue) as it could be assumed from the cones sensitivities. The 

interaction that takes place, produces a colour information that contains three channels : an 

achromatic signal and two chromatic signals. 

Figure 2.05: Cones interconnect in the retina leading to opponent – type signals   [5 p16]  .  
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The neurons leading the achromatic signal, noted A, collect their inputs from both rods and 

all three types of cone [4 p24] and can be written as:

A = 2L + M + S720 + Rods.

The colour information from the input of the three types of cones can be compressed into 

two achromatic signals. This is because the information is not from the signals coming 

from each of the three cones but consists of the difference between them. So knowing the 

difference between L and M cones, and between S and M cones, the difference between S 

and L cones can be deducted. The two achromatic channels can also be referred to colour 

difference signal [4 p25]:

C1 = L - M

C2  = (S - L) - (M-S) = 2S - (L + M)

Figure 2.06: opponent space sensitivity response: the interaction of the cone responses  [5 p16]  .  

The colour information taking place in the neurons is hence often referred to opponent 

colour signals.
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 2.4 Spatial  Properties  of  Colour  Vision:  the  Contrast  Sensitivity 

Function

Objects  are  better  distinguished  from  each  other,  or  from  their  background,  if  the 

difference in luminance or colour between them is large. Of these two factors, luminance 

plays the most important role. In practice, it appears that it is not the absolute difference in 

luminance that is important, but the relative difference. “This relative difference can be 

expressed by the difference between two luminance values divided by the sum of them,  

which is simply called contrast.” [3 p26] The reciprocal of the minimum contrast required 

for detection is called contrast sensitivity [35 p7].

 2.4.1 Contrast Sensitivity Function and Spatial Frequency

A  contrast  sensitivity function (CSF) “is defined by the threshold response to contrast  

(sensitivity is the inverse of threshold) as a function of spatial (or temporal) frequency”. [3 

p26] contrast  sensitivity  functions  are  usually  “measured  with  stimuli  that  vary  

sinusoidally across space (or time)” [3 p26].

Figure 2.07: Example of a sinusoidal luminance variation. The modulation is defined by the amplitude  of the 

sinusoidal  variation  divided  by  the  average  luminance.  The  contrast  sensitivity  is  the  reciprocal  of  the 

threshold value of the modulation for the detection of the variation.   [35 p7]  .  
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 2.4.2 Restrictions of the Model of the Contrast Sensitivity Function

Knowledge of the contrast sensitivity function is important for the understanding of the 

visual  properties  of  the eye.  Contrary to  the colorimetric  sensitivity  curves  of  the eye 

adopted as a standard by the CIE (Commission International de l'Eclairage), a standard 

does not exist for the contrast sensitivity function of the eye. Defining such standard would 

be difficult  because the contrast  sensitivity of a luminance pattern depends, as seen on 

figure 2.08, on many parameters: Amplitude of the wave, the wave shape (sine, square,...), 

object luminance, surround luminance, border condition (frame, background), observing 

distance, field size, direction of the gratings (vertical, horizontal...).

Figure 2.08: shape of the contrast sensitivity function depending on the changes in conditions   [21]  .  

The spatial contrast sensitivity model defined here is restricted to the normal situation of 

foveal vision and to photopic vision. Outside the fovea, the contrast sensitivity and the 

resolution of the eye is significantly reduced.

The contrast  sensitivity  function  can  be  determined for  each  channel  of  the  opponent 

colour space.
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 2.4.3 Achromatic or Luminance Contrast Sensitivity Function

“The luminance contrast sensitivity function is band-pass in nature, with peak sensitivity  

around 5 cycles per degree”[4 p26]. It draws near zero at zero cycles per degree, this is in 

accordance with the fact  that  the visual system is insensitive to uniform fields.  It  also 

converges toward zero at about 60 cycles per degree: after this limit the mosaic of the 

photoreceptors can not resolved details any more. [4 p26].

Indeed  the  photoreceptor  mosaic  is  the  limiting  element  for  the  sampling  of  the 

frequencies. Namely, since the achromatic signal is mostly made of L, M, S and few rods 

stimuli, the centre-to-centre foveal cones spacing is the smallest possible: 2,4 μm, which 

corresponds to 30 seconds of visual angle.

Figure 2.09: Spatial contrast sensitivity functions for luminance and chromatic contrast   [3 p28]  .  
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 2.4.4 Chromatic Contrast Sensitivity Function

“The chromatic mechanisms are of a low-pass nature and have significantly lower cut-off  

frequencies” [3p26], which are due to the photoreceptor mosaic, as explained previously. 

The red-green signal is made only from the L and M cones. Since there are only two types 

of cone, the centre-to-centre foveal cone spacing is greater than for the luminance contrast 

sensitivity function, and hence the sampling Nyquist frequency is smaller. Similarly, “the 

blue-yellow chromatic contrast sensitivity function has a lower cut-off frequency than the 

red-green chromatic contrast  sensitivity function due to  the scarcity  of  S cones in  the  

retina” [3p27] and the larger S to S-cones spacing than the L to M-cones spacing.

This lower cut-off frequency indicates a reduced availability of chromatic information for 

fine details that is often taken advantage of in image coding and compression schemes 

(Jpeg compression [31]).

It  is  also  important  to  point  out  that  the  contrast  threshold  of  the  luminance  CSF  is 

significantly higher than that of the chromatic contrast sensitivity function. In deed “the 

visual system is more sensitive to small  changes in luminance contrast  compared with  

chromatic contrast” [3 p32]. This could be explained by the summation of the cones and 

rods stimuli for the luminance signal, whereas the chromatic signal are made by inhibition 

between the cones' signals.
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 2.5 Human Visual Model and its Algorithm

Based on the cognition of the visual system, a human visual model has been developed 

[20] [17] and can be implemented as an algorithm [17] [16 annex C] [18].

 2.5.1 Human Visual Model

In  order to  understand the visual  noise measurement  model,  the human visual  system, 

described in the four first paragraphs of this chapter, can be simplified in the followings 

steps: (the model is valid for photopic viewing conditions and normal vision):

1) An object is observed through the optical system of the eye (the spatial responses of the 

eye's optics is not taken account in the model because this reduction is not that important in 

comparison with the one taking place in the visual neural system).

2)  The  electromagnetic  radiation  coming  from  the  object  are  detected  by  the 

photoreceptors: L, M and S cones for photopic vision [paragraph 2.2.1].

The detected signals are then processed by the visual neural system, which is complex 

[paragraph  23],  but  can  be  simplified  into  two  steps  although  they  both  occur 

simultaneously during the neural processing:

3) First the detected signals are transferred into the opposite colour space, which consists 

of  three  sets  of  coordinates:  white-black,  A  for  achromatic,  red-green,  C1  for  first 

chromatic channel, and yellow-blue C2 for second chromatic channel [paragraph 2.3.4].

4) Second, each image signal in the opposite colour space is filtered by each corresponding 

contrast sensitivity function [paragraph 2.4].

5)  Finally,  the processed signals  reach the brain,  where the actual  sensation of  colour 

occurs. This can be best described by the three coordinates: lightness, chroma and hue, 

which is the polar representation of the CIELab or CIELuv colour space.
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Figure 2.10:  Representation of  a  Human Visual  Model  and its  corresponding algorithm,  used by the two 

models (partly inspired from   [17]  ).  
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 2.5.2 Algorithm of the Human Visual System

In order to simulate the human visual system for a visual noise evaluation, an algorithm 

following the steps described above [paragraph 2.5.1] has been implemented in Matlab® 

in the context of this diploma thesis. The algorithm is described in  Annex C of the  ISO 

15739:2002(E) [16] as  well  as  in  the  paper  of  Hung  et  al  [17]  and  can  be  used  in 

Photoshop® as a "Noise Measurement" Plug-in  [18].  Still  the Matlab® implementation 

differs slightly from the proposed algorithm since a different contrast sensitivity function 

and white point for the characterisation of the display are used.

The colour signal coordinates of the device (RGB for a display or for a digital still camera) 

must be first transformed into the colour signal coordinates of the eye (opponent colour 

space).

Step 1: since each device has its own colorimetric characteristics, device dependent colour 

space coordinates must be converted into device independent colour space coordinates (the 

profile connection space). Here, the RGB data of the image is transferred into the CIE 

tristimulus values Xd, Yd, and Zd by the matrix obtained from the ICC-profile describing 

the device. Depending on the manufacturer, the transformation can be a matrix or a Look 

up table  [34 p18]. This has been taken into account in the implementation of the visual 

noise measurement in Chinon [mfile taggedRGBtoXYZ.m]. 

Each profile connection space has a specified white point given by the illuminant (in the 

praxis mainly illuminant D50 for displays) to which each coordinates of the space are then 

related to.

[X d

Y d

Z d
]= M pcs⋅[ R

G
B] (2.01)
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with for example:

M pcs = M sRGB = [ 0,9907 0,075034 −0,015343
0,0072788 0,99476 −0,0015417

0 0 0,91827 ] (2.02)

The default parameters [18] of the Photoshop® Plug-in are set to the sRGB IEC61966-2.1 

profile. In this case the illuminant is D65 and the transformation matrix has been defined 

by  the  sRGB  standard  IEC  61966 [36].  One  the  other  hand,  in  the  Matlab® 

implementation, the transformation matrix is read out of the used profiles.

Step 2: Before  transforming the tristimulus  values  Xd,  Yd,  and  Zd into  the opponent 

colour space specific for the eye's processing of colour, the display tristimulus values are 

transformed into the Xe, Ye and Ze tristimulus values defined with the illuminant E.

The eye has a capacity of chromatic adaptation [paragraph 2.2.2], which means that the 

cones responsivity depends on the light illumination. Contrary to an illuminant, the eye 

does not have a predefined white point. Hence in order to model the eye (in analogy to a 

colour space), the eye needs to be characterised with a white point. For this purpose the 

illuminant E has been chosen because of its spectral distribution, which is equal over the 

whole spectrum.

[X e

Y e

Z e
]= M adapt⋅[ X d

Y d

Z d
] (2.03)
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with:

M adapt = [
LwpE

LwpIlluminant
0 0

0
M wpE

M wpIlluminant
0

0 0
S wpE

S wpIlluminant

] (2.04)

Given  that  the  white  point  of  the  profile  connection  space  can  differ,  the  chromatic 

adaptation transformation can consequently also differ.

[ Lwp

M wp

Swp
]= M vonKries⋅[X wp

Y wp

Z wp
] (2.05)

with

M von Kries = [ 0,40024 0,70760 −0,08081
−0,22630 1,16532 0,04570

0,0 0,0 0,91822 ] (2.06)

In  the  technical  literature,  there  are  different  primaries  proposed  for  the  chromatic 

adaptation via the cones' space. Since there is no recommendation, the matrices had to be 

tested with a uniform white image, and the tristimulus Xe, Ye and Ze responses compared 

[appendix  D1].  The matrix  that  produces  the tristimulus  values  closest  to  1  has  been 

chosen because illuminant E is spectrally equal. Here it is the von Kries transformation 

related by Berns [5], but which is very similar to the von Kries transformation proposed by 

Hunt [4 p71] (also found in the ICC.1:2001-12 specification [34 p87]).
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Step3: These tristimulus values Xe, Ye and Ze are transferred into the opposite colour 

responses:  white-black A, red-green C1,  and yellow-blue C2.  Here again the technical 

literature  proposes  different  transformation  matrices  [appendix  D2].  Since  there  is  no 

recommendation,  the  matrices  have  been  tested  with  a  uniform white  image,  and  the 

opponent responses  compared.  The  matrix  that  seems to  produce  the most  appropriate 

opponent coordinates for a white has then be chosen. In this case it was the matrix set in 

the default parameter text file of the Photoshop® plugin.

[ A
C1
C2]= M opposite⋅[ X e

Y e

Z e
] (2.07) with: M opposite = [0,0 1,0 0,0

1,0 −1,0 0,0
0,0 0,4 −0,4] (2.08)

The opponent colour signals are then processed with the contrast sensitivity function.

Step  4: Using  the  Discrete  Fourier  Transform,  the  set  of  the  opponent  responses  is 

transferred from the spatial space into frequency space: FA, FC1 and FC2 respectively: 

A 
DFT FA

C1 
DFT

FC1

C2 
DFT FC2

(2.09)
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Step 5: In  the frequency space,  each response  is  filtered by the  corresponding spatial 

responses of the contrast  sensitivity function  [paragraph 2.4]:  this should simulate the 

decrease in sensitivity that occurs in the human visual system:

FA f = FA⋅CSF achromatic

FC1 f = FC1⋅CSF chromatic

FC2 f = FC2⋅CSF achromatic

(2.10)

This blurring tends to increase as a function of cycles-per-degree of visual angle, so before 

filtering the opponent space coordinates in the frequency space, the contrast  sensitivity 

function must previously be scaled depending on the eye's resolution of the image. This is 

dependant on a specific viewing angle (cycles per degree) which is defined through the 

image height or viewing distance.

In digital imaging applications, cycles-per-degree is a function of both addressability and 

viewing distance.  In  our  Chinon program,  we implemented  two ways to  calculate  the 

cycles per degree:

Equation 2.11 proposed by Fairchild [20 p428]:

cycles /degree = ppi
180


⋅arctan  1inch
viewing distance 

(2.11)

For example, if a computer monitor is capable of displaying 72 pixels-per-inch (ppi) and is 

viewed at 18 inches then there are roughly 23 digital samples per degree of visual angle.
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Equation.  2.16  developed  in  the  context  of  this  diploma thesis  in  order  to  match  the 

experiment conditions.

B: Width of the monitor.

b: Width of the visual field as observed.

R: number of pixel presentable in the width 

of the monitor.

r: number of pixels seen in the visual field b.

α:  angle  of  the  visual  field,  per  definition 

α=1°.
Figure 2.11: Representation visual field b in function of the viewing distance d and the angle of the visual field.

Relating to Figure 2.11:

tan  
2
=b /2

d (2.12) ↔ b=tan 
2
⋅2⋅d (2.13)

Calculation of how many pixels are in the visual field b:

r= b
B
⋅R (2.14) ↔ r=

2⋅R⋅d⋅ 
2


B
(2.15)

The Nyquist frequency is made out of two pixels:

cycles / degree = r
2
=

R⋅d⋅tan 
2


B
(2.16)

Often the monitor size is given by its diagonal size in inches. Moreover the format ratio of 

the  monitor  can  vary  depending  on  its  kind  (CRT or  LCD  etc...).  So  in  the  Chinon 

program, in addition to the diagonal monitor size, the user is asked to enter information 

about  the  horizontal  and  the  vertical  size.  From this,  the  monitor  width  can  then  be 

determined with Pythagoras:

30



Chapter2: The Human Visual System and the Human Visual Model

Rh: horizontal monitor resolution

Rv: vertical monitor resolution.

H: monitor height

Z: monitor diagonal.

H=ratio⋅B  (2.17) with ratio=
Rv

Rh
(2.18)

From Pythagoras: Z 2=B2H 2 (2.19) it is obtained B=Z⋅1ratio2 (2.20).

The contrast  sensitivity function has not been standardized yet  [paragraph 2.4.2].  The 

shape  of  the  function  is  itself  dependent  of  many  parameters  [figure  2.08] like  the 

luminance of the object or its  surrounding, the observing distance,  the field angle...  In 

reality a contrast sensitivity function should be used for carefully predefined settings. 

In  the  Matlab® implementation,  the  used  contrast  sensitivity  function  is  proposed  by 

Fairchild  [20 pp429-430] and there are  three different  functions  to  apply on the three 

opponent colour signals. While in the Photoshop® Plugin the contrast sensitivity function 

is defined as weights applied in a look up table [18]. Here, the same response curve for C1 

and  C2  are  used,  since  chromatic  contrast  sensitivity  function  have  nearly  the  same 

behaviour and magnitude compared to the achromatic contrast sensitivity function.

For both the luminance, the contrast sensitivity function has been scaled to unit 3 for the 

maximum value and to unit 1 for the chromatic contrast sensitivity function. This relies on 

the eye higher sensitivity for changes in luminance than for changes in colour  [figure 

2.09].  Since  the  contrast  sensitivity  function  has  not  been  standardized  yet,  this  is  an 

arbitrary choice which can still be discussed.
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Figure 2.12: CSF proposed by Fairchild   [20]  Figure 2.13: CSF proposed by Hung et al   [18]  

In order to be able to evaluate a noise value, the now filtered eye-adapted coordinates must 

be converted into a colour space where a noise value can be determined. So firstly, all 

previously transformation steps must be reversed.

Step 6: Corresponding to step 4, Inverse Discrete Fourier Transform is used, and each 

filtered response is now transferred back into real space.

FA f 
inverse DFT A f

FC1 f 
inverse DFT C1 f

FC2 f 
inverse DFT C2 f

(2.21)

Step 7: Corresponding to step3, the three opposite colour responses Af, C1f, and C2f are 

transferred into tristimulus values, Xef, Yef, and Zef with the inverse opposite matrix.

[X ef

Y ef

Z ef
]= M inverse opposite⋅[ A f

C1 f

C2 f
] (2.22)
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Step 8: Corresponding to step 2, the inverse matrix of the von Kries adaptation model is 

applied, and each tristimulus value Xef,  Yef, and Zef should be transferred back into the 

former tristimulus values white-point settings of the display: Xdf, Ydf, and Zdf. For ease 

of comparison for practical applications, the filtered tristimulus values Xef,  Yef, and Zef 

are not obligatory transferred back into the former illuminant display settings, but back into 

the tristimulus values of the standard illuminant D50.

[X ef

Y ef

Z ef
]= M adapt inverse⋅[X df

Y df

Z df
] (2.23)

Now that the actual tristimulus values Xdf, Ydf, and Zdf have been filtered with the human 

visual algorithm the quantification of noise can now be determined. To do so, the two 

following approaches are going to be investigated:

First the determination of a visual noise value with the visual noise measurement model, 

which will be dealt with in the chapter 3.

Second,  the  determination  of  a  noise  value  as  a  colour  difference  with  the  S-

CIELabDE2000 model, which will be dealt with in the chapter 4.
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 3 .Chapter 3:Visual Noise Measurements Model

 3.1 Visual Noise Value Formula

 3.1.1 The Formula

 3.1.1.1 The Formula from the CIELuv1976 Colour Space

After having filtered the image data with the human visual model algorithm, corresponding 

to step 8, the tristimulus values  Xdf, Ydf, and Zdf   have been filtered, from which the 

visual noise value can now be determined.

Step 9: First the tristimulus values Xdf, Ydf, and Zdf are being converted into the uniform 

CIELuv 1976 colour space [8 p165]:

L *= 116⋅3 Y
Y w

−16 3.01 for Y
Y w

0,008856 otherwise L* = 903,3⋅ Y
Y w

 3.02 

u* = 13⋅L⋅u '−u ' w 3.03 with u ' = 4X
X 15Y3Z 

u ' w =
4Xw

X w15Yw3Zw
3.04

v *= 13⋅L⋅v '−v 'w 3.05 with v ' = 9X
X15Y3Z

v ' w =
9Xw

X w15Yw3Zw
3.06

Step 10: Here, the visual noise value can be determined, and is defined as the weighted 

sum of three standard deviations of the colour noises along the L*, u* and v* axes from the 

CIELuv 1976 colour space [16] [17] [18]:

Visual Noise Value = 1⋅std L*  0,852⋅std u *  0,323⋅std v * (3.07)
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The weights for each axes has been determined with an empirical approach to fit the visual 

experiences by giving some coefficients [21]. These coefficients seem to match the human 

visual colour discrimination behaviour. Namely, the eye recognises better differences in 

luminance than in  chroma,  as well  as  differences in  the red-green channel  than in  the 

yellow-blue channel.

 3.1.1.2 The Formula from the CIELab1976 Colour Space.

Although  it  was  not  recommended  in  the  ISO  15739:2002(E)  [16], in  the  Matlab® 

implementation the visual noise value is also determined as the weighted sum of three 

standard  deviations  of  the  colour  noises  along  the  L*,  a*  and  b*  axes  from  the 

CIELab1976 colour space:

The luminance coordinate L* is calculated with the equations 3.01 and 3.02 used before 

for the CIELuv1976 colour space.

The a* and b* coordinates are calculated as following [8 p167]:

a * = 500⋅ f  X
X w

− f  Y
Y w

 (3.09)

b* = 200⋅ f  Y
Y w

− f  Z
Z w

 (3.10)

with:

f  X
X w

= 3 X
X w

 for X
X w

0,008856 otherwise X
X w

=7,787⋅ X
X w

 16
116

f  Y
Y w

= 3 Y
Y w

 for Y
Y w

0,008856 otherwise Y
Y w

=7,787⋅ Y
Y w

 16
116

f  Z
Z w

= 3 Z
Z w

 for Z
Zw

0,008856 otherwise Z
Z w

=7,787⋅ Z
Z w

 16
116
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In analogy to equation 3.07, the visual noise value is obtained:

Visual Noise Value = 1⋅std L  0,852⋅std a  0,323⋅std b (3.11)

 3.1.1.3 CIELuv1976 vs. CIELab1976

As it has already been discussed in paragraph 1132, both colour spaces are supposed to be 

approximately uniform according to the CIE, and the two formulae are almost equal in 

their degree of agreement with visual judgements of colour difference [19].

They actually differ in their orientation and the CIELuv1976 has the advantage of being a 

linear chromaticity diagram, in which additive colour mixture is represented by straight 

lines. This means that “when two coloured lights, C1 and C2, are mixed additively” [19] 

and plotted in the diagram, “the colour C3 produced will be on the straight line joining C1  

and C2, at a position that can be calculated from the relative amounts of”  [19] the two 

mixed colours. Consequently the CIELuv1976 formula is mostly used by people dealing 

with self-luminous colours. But it must be kept in mind that it has not been recommended 

by the CIE because, from the point of view of uniform spacing of colours, there is no 

evidence to support this.

The  CIELab1976  diagram is  derived  from an  already in  the  industry  commonly  used 

formula and is used mainly by surface colour industries. So the choice of which formula to 

use in a particular situation will often depend, not so much on scientific merit, but on other 

factors such as  familiarity,  convenience of use in particular  industrial  applications and 

conformance to the practice [22] [19].

But according to the Robertson's investigations  [19], which have been already presented 

briefly in the paragraph 1132, the CIELab1976 colour space should be more appropriate to 

measure wide colour surfaces, while the CIELuv1976 colour space should perform better 

to  measure  local  colour  differences.  Because  noise  is  more  characteristic  of  local 

structures, the CIELuv 1976 colour space have been preferred and proposed in the ISO 
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15739:2002(E)  [16].  But  regarding  these  observations,  the  CIE  has  not  made  any 

recommendations since it could find no evidence to support one more than the other and 

the formulae are considered to have equal merit as far as uniformity of spacing of colours 

is  concerned.  That  is  why,  in  addition  in  this  diploma thesis,  it  has  been  decided  to 

investigate also the noise value with the weighted sum of the standard deviations along the 

L*, a* and b* axes.

37



Chapter 3:Visual Noise Measurements Model

 3.2 Results of the Visual Noise Measurement Model

The threshold images [paragraph 1.2.1], have been tested on their visual noise value with 

the Photoshop® plugin and the implementation of the noise measurement algorithm in 

Matlab®,  Chinon.  If  the  visual  noise  measurement  model  is  valid,  i.e.,  if  it  describes 

correctly the human visual perception, it is expected that the same visual noise value will 

be measured for the threshold images regardless of the noise input channel (luminance, 

chroma or hue)  [paragraph 1.2.2]. The challenge is maybe to get any idea for what the 

visual noise (VN) values stand for as it should quantify visually how much noise the eye 

can see.

How to use the plugin: refer to: Operating instructions of the Photoshop Plugin: Noise 

Measurements Plug-in ver.1.20 User's Guide, November 8th, 1999, Konica Corporation. 

[18].  (In  the  measurements  in  this  work,  the  self-made  Test  Chart: 

ISO_chart_pos_shiraz.txt has been used (refer to the diploma thesis' CD).

How to use Chinon: refer to appendix C.

Table  3.01:  Setting  of  Chinon  for  the  followings  evaluation  (parameters  and  viewing  conditions  of  our 

experiment):

viewing distance 60cm

horizontal monitor resolution 1280

vertical monitor resolution 1024

monitor diagonal 19 (LCD)

calculated cycles per degree 17,78

monitor profile Monitor_25012006_1.icc
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The following tables 3.02, 3.03, and 3.04 and respectively corresponding graphs 3.02, 3.03 

and  3.04  report  the  visual  noise  value  results  for  the  investigations  of  the  noise 

measurement model with the threshold images. This is for the uniform patches with colour 

blue, brown, cyan, dark grey, dark violet, yellow, skin1, skin2, light grey, magenta, mid- 

blue, mid-green, orange, pastel, and red defined by Jan Fischer and Michael Bantel  [10 

p40].

First the noise input for the threshold image as a colour difference and its corresponding 

variance are reported. Then the visual noise value for each threshold image is determined 

by the Photoshop® Plug-in's filter and then with Chinon with the visual noise value as 

standard deviation from Luv and at  last  from Lab.  Then for  each noise input  channel 

(luminance,  chroma,  hue),  the  mean value  of  the  visual  noise  values  of  all  the  tested 

colours is calculated. Each visual noise value of the threshold images are compared to the 

mean value and this is reported as deviation.
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 3.2.1 Noise Evaluation for Colour Difference in the Luminance Channel

Table 3.02: visual noise value of the threshold images with noise input in the luminance channel.

Visual noise Value deviation to mean value
Shiraz Plugin chinon plugin chinon

Colour patch ΔL variance luv luv lab luv luv lab
Blue 0,4 0,03 1,21 1,13 1,00 -0,58 -0,29 -0,36

Brown 0,5 0,04 2,14 1,79 1,99 0,35 0,37 0,62
Cyan 0,5 0,04 1,56 1,31 1,27 -0,23 -0,10 -0,09

Dark grey 0,5 0,02 1,1 0,93 0,92 -0,69 -0,49 -0,44
Dark violet 0,4 0,03 1,27 0,95 1,00 -0,52 -0,47 -0,36

Yellow 0,6 0,04 2,38 1,85 2,06 0,59 0,43 0,70
Skin1 0,4 0,03 1,25 0,91 0,80 -0,54 -0,51 -0,56
Skin2 0,4 0,04 1,61 1,25 1,07 -0,18 -0,17 -0,29

Light grey 0,5 0,05 1,2 0,98 0,93 -0,59 -0,43 -0,44
Magenta 0,4 0,02 1,74 1,16 1,14 -0,05 -0,26 -0,23
mid blue 0,6 0,05 1,86 1,76 1,50 0,07 0,35 0,13

Mid green 0,4 0,03 1,75 1,32 1,62 -0,04 -0,10 0,26
Orange 0,5 0,03 2,46 2,00 1,96 0,67 0,59 0,59
pastel 0,5 0,03 1,55 1,10 1,00 -0,24 -0,32 -0,36
Red 0,6 0,1 3,74 2,81 2,19 1,95 1,40 0,83

mean value 1,79 1,42 1,36
variance 0,47 0,28 0,23

st deviation 0,69 0,53 0,48

The luminance differences ΔL for detecting the noise threshold are small. This may be due 

to either simply the uniformity of the noise input values for the threshold images for the 

luminance channel, or a too coarse scaling of the noise input in the luminance channel in 

Shiraz.  Indeed  the  maximum  noisy  image  is  associated  with  a  colour  difference 

ΔE=ΔL=10,  and  the  threshold  is  always  smaller  than  ΔE=ΔL=1.  But  this  may  be  a 

precipitous assumption, since the variance for determining the threshold images are very 

low. This means that all the tested observers almost agree on the same noisy image, and 

that there are no doubts about the reliability of the measurements.
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Graph 3.02: plots of the visual noise value for the threshold images with noise input in the luminance channel.

The visual noise values are very similar in that the deviation of the visual noise values 

stays low, except for the red, which visual noise value lays 2 count higher than the mean 

value (bold font in the table 3.02). Consequently all the reddish colours like brown, yellow 

and orange have the highest visual noise values. This exceptional behaviour can be partly 

explained later thanks to further investigation [paragraph 3.3.1.1].

Related to the graphical representation of the visual noise value of the threshold images, 

graph 3.02, the Matlab® implementation of the visual noise algorithm seems to achieve 

better results than the Photoshop® plugin (smaller standard deviation for the mean value of 

the threshold images).  In addition, there are no real differences between the visual noise 

value calculated from the CIELuv 1976 than from the CIELab 1976. Actually it can be 

noticed that the curves have the same shape.

But in general, as it is expected, the threshold images achieve similar visual noise values. 

Still this first conclusion must be taken with care since this first result only applies to one 

kind of noise, and the noise input seems to be already uniform in itself (ΔE=ΔL colour 

differences of the noise input are similar).
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 3.2.2 Noise Evaluation for Colour Difference in the Chroma Channel

Table 3.03: visual noise value of the threshold images with noise input in the chroma channel.

Visual noise Value deviation to mean value
Shiraz Plugin chinon plugin chinon

Colour patch ΔC variance luv luv lab luv luv lab
Blue 4,1 1,8 1,94 1,47 0,72 -1,43 -0,48 -0,96

Brown 4,4 1,84 2,95 1,64 1,39 -0,42 -0,31 -0,30
Cyan 5,2 3,68 3,17 1,92 1,98 -0,20 -0,03 0,29

Dark violet 6,8 6,99 3,51 1,64 2,10 0,14 -0,31 0,41
Yellow 15 15,15 3,08 1,84 2,17 -0,29 -0,11 0,49
Skin1 3,9 1,5 3,74 2,17 1,59 0,37 0,21 -0,10
Skin2 3,5 1,95 3,59 2,18 1,55 0,22 0,22 -0,14

Magenta 5,6 6,49 3,21 1,58 1,67 -0,16 -0,38 -0,02
Mid blue 5 5,08 1,93 1,54 0,80 -1,44 -0,41 -0,88
Mid green 10,5 13,58 4,68 2,45 3,00 1,31 0,50 1,31

Orange 7 6,14 3,99 2,41 1,79 0,62 0,46 0,10
Pastel 3,9 2,15 3,84 2,18 1,68 0,47 0,23 -0,01
Red 4,3 2,14 4,47 2,20 1,58 1,10 0,25 -0,11

Mean Value 3,39 1,94 1,69
variance 0,60 0,10 0,29

std deviation 0,77 0,32 0,54

Graph 3.02: plots of the visual noise value for the threshold images with noise input in the chroma channel.
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Here the dark grey and light grey colour are not evaluated because, by definition, it is not 

possible to put any chroma deviation in a grey sample (ΔE=ΔC=0).

While the luminance difference as noise input is quiet constant (luminance difference stays 

in a range of ΔL=ΔE between 0,4 and 0,6), the chroma difference varies a lot for different 

colours.  This is  more than ΔE=ΔC=10 for yellow and mid-green while,  for  the others 

colours, the noise input stays in a range of ΔC between 4 and 7 (red and blue colours get 

the smallest values). This can be explained with the eye's sensitivity behaviour which is 

more sensible for luminance than for colour. So relating only to the colour discriminations, 

this would mean that the eye would see chroma's differences more clearly for red and blue, 

while it would less clear for yellow and mid-green.

It can also be noticed that the higher the colour difference, ΔE=ΔC as noise input, the 

higher the variances are. This means that the higher the colour difference gets, the more 

difficult it is to determine an exact threshold image.

But despite these large chroma differences in the noise input, the visual noise values are 

similar. Relating to the standard deviation of the mean value over the threshold images, the 

Matlab®  implementation  of  the  algorithm  seems  to  be  more  homogeneous  (smaller 

variance) - in particular, the visual noise formula calculated along the Luv axes rather than 

the formula calculated along the Lab axes. 

Here it can be noticed that the curves do not have the same shape, they all differ from each 

other depending on the colour. In the case of the Matlab® implementation, this is probably 

due  to  the  difference  in  orientation  between  the  colour  space  CIELab1976  and 

CIELuv1976 [paragraph 3.1.1.3]. In the case comparing the visual noise value from the 

formula  along  the  Luv  axes  between  the  Photoshop®  plugin  and  our  Matlab® 

implementation,  this  can  be  due  to  the  different  contrast  sensitivity  functions  used 

[paragraph 2.5.2].
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In  analogy,  the  same  shape  of  the  curves  for  noise  input  in  the  luminance  channel 

[paragraph  3.2.1] can  be  explained.  Regarding  the  two  curves  of  the  Matlab® 

implementation (Luv and Lab formulae),  the luminance coordinate is  calculated as the 

same  for  the  CIELab1976  and  CIELuv1976  colour  space  [formula  3.01  and  3.02]. 

Regarding the curves of the Matlab® implementation and the Photoshop® Plug-in, the 

tools used two different contrast sensitivity functions in the algorithm, but the luminance 

contrast sensitivity functions seem to have a similar shape  [paragraph 2.5.2], while the 

chromatic contrast sensitivity functions differ from each other  [paragraph 2.5.2].  This 

explain the similarity  in  the shape of the two curves for  noise input  in  the luminance 

channel  and  the  difference  of  shape  of  the  two curves  for  noise  input  in  the  chroma 

channel.

It can be noticed that the highest deviation from the mean value of the visual noise value 

over the threshold images occurs this time for blue and green (bold font in the table). No 

relevant explanations could be found for this.

For yellow, but also for green, the observers were reluctant to tell if there were noise input 

at  all  (for  these  colours  the  colour  variation  is  very  high,  over  13,  and  the  chroma's 

difference is in a range of a ΔE=ΔC over 10). Out of the measurements, the noise input of 

yellow was first averaged to 12,1, with the highest variance of 15,15. So it is possible that 

the threshold is for a noise input higher than ΔC=15 (maximum value of noise input in the 

chroma channel set by Shiraz) and it could actually not be determined.

For the results,  it  has been assumed that the setting of Shiraz did not allow any noise 

perception in yellow and the noise input was set to ΔC = 15. For the formula calculated 

from the Luv axes, the value is still smaller than the mean value of the threshold image, 

while for the formula calculated from the Lab axes, the value is quite higher than the mean 

value. However, this remains within an acceptable range (deviation of 0,5 to the mean 

value).
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This agrees with the assumption that the noise threshold could have actually been out of 

range of the possible noise input. Moreover, it agrees with the assumption that the tested 

person in the demand of seeing noise tried to see noise in yellow where it could actually 

not be seen. Perhaps increasing the maximum setting of Shiraz to ΔE=ΔC=20 could avoid 

this uncertainty.

Despite this uncertainty, the variance and the standard deviation for the visual noise value 

over  the  threshold  images  stay  under  an  acceptable  range.  Thus,  the  visual  noise 

measurement model shows satisfying result  by quantify the threshold images for noise 

input in chroma.
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 3.2.3 Noise Evaluation for Colour Difference in the Hue Channel

Table 3.04: visual noise value of the threshold images with noise input in the hue channel.

Visual noise Value deviation to mean value
Shiraz Plugin chinon plugin chinon

Colour patch ΔPhi variance luv luv lab luv luv lab
Blue 6,2 5,07 2,1 1,34 1,51 -0,93 -0,42 -0,04
brown 6,6 4,6 2,43 1,38 0,81 -0,60 -0,38 -0,74
Cyan 11,2 12,71 2,17 1,51 0,99 -0,86 -0,25 -0,56
Dark violet 6,2 5,54 2,59 2,30 1,94 -0,44 0,54 0,39
yellow 5,9 2,72 4,81 1,64 1,60 1,78 -0,12 0,04
Skin1 12,4 12,72 2,29 1,24 1,35 -0,74 -0,52 -0,21
Skin2 11,2 16,7 3,28 1,72 1,52 0,25 -0,04 -0,03
magenta 2,8 1,57 3,46 2,07 1,49 0,43 0,31 -0,07
Midblue 3,9 1,85 2,46 1,85 1,83 -0,57 0,09 0,27
midgreen 5,8 3,26 2,99 2,10 1,94 -0,04 0,34 0,39
Orange 6,1 4,64 4,81 2,11 1,76 -1,78 0,35 0,20
Pastel 15 7,37 2,14 2,16 2,06 -0,89 0,40 0,50
Red 7,9 8,47 3,84 1,48 1,42 0,81 0,28 -0,14

mean value 3,03 1,76 1,56
variance 0,92 0,13 0,13
st deviation 0,96 0,36 0,37

Graph 3.04: plots of the visual noise value for the threshold images with noise input in the hue channel.
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Here the dark grey and light grey colours are not evaluated because by definition it is not 

possible to put any hue deviation in a grey sample (Δh = 0).

The hue colour difference also shows big differences among the colours. This concerns a 

range of Δh between 2,8 for the magenta colour and 11,2 for cyan. This would mean that 

the eye is most sensitive to changes of hue in magenta and is worst in cyan.

The visual  noise values  are,  similar  for  all  the threshold images.  Again the  Matlab® 

implementation gets more homogeneous visual noise value than the Photoshop® Plug-in.

The shape of the curves are also quite similar and do not show big differences between the 

use of the formula calculated along the Lab axes or the Luv axes. The shape of the curve of 

the Photoshop® Plug-in are  showing more deviations with the yellow, red and orange 

colours getting the highest visual noise value, and blue and cyan getting the smallest. This 

may show an inadequate  filtering of  the opponent  colours  with the  chromatic  contrast 

sensitivity function.

 3.2.4 First Conclusions

Because  of  the  high  standard  deviation  (from  1,5  to  15)  [Table  3.02  and  3.03] to 

determine through experiments the threshold images for noise input in the chroma and hue 

channel, the precision of the measurements could have been doubted. But still the visual 

noise measurement model  fulfils  the expected thesis.  In other words,  for the threshold 

images the visual perception is the same so the visual noise value should also be the same.

Table 3.04: Mean value of the visual noise value of the threshold images

Noise Input Plugin Luv Chinon Luv Chinon Lab

ΔL 1,79 1,42 1,36

ΔC 3,37 1,95 1,69

Δh 3,03 1,76 1,56

Mean value 2,73 1,71 1,54

Standard deviation 0,83 0,27 0,17
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Table 3.05: Standard deviation of the mean value of the visual noise value of the threshold images

Noise Input Plugin Luv Chinon Luv Chinon Lab

ΔL 0,69 0,53 0,48

ΔC 0,77 0,32 0,54

Δh 0,96 0,36 0,37

The Matlab® implementation of the algorithm of the model is achieving the best results 

(similar values of the visual noise value for the different noise input channel, with the 

smallest and acceptable standard deviations). However, the Photoshop® plugin is already 

less homogeneous inside the noise input channels themselves (higher standard deviations). 

Moreover, the visual noise value for luminance noise input is 1 noise-count value smaller 

than the visual noise value of the colour's channels, which are the same. This could match 

with the observation that noise in the luminance was easier to detect than the noise in 

chroma and hue.

But this may be due to a too weak weighting of the chromatic contrast sensitivity function. 

Since the threshold images stands for the same visual perception (JND) regardless of the 

kind of noise,  it  is  expected that the visual noise value is  not only the same over the 

different colours of a set with same kind of noise input, but that the visual noise value is 

also the same for the different kind of noise. While the Matlab® implementation fulfils the 

thesis expectations, the Photoshop® Plug-in does not, that is why it would be assumed that 

the weighting of the used chromatic contrast sensitivity function are not accurate enough.

This assumption can match with the former observations. Namely that for the hue and 

chroma noise input, the shape of the curves between the Matlab® implementation and the 

Photoshop® Plug-in the  [graph 3.02, 3.03, 3.04], describing the dispersion of the visual 

noise value for each colour referring to the mean value, are different. This is probably due 

to the use of a different chromatic contrast sensitivity function [paragraph 2.5.2].
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From table 3.04 and 3.05, comparing the results of the Matlab® implementation between 

the Luv and Lab formulae, there are no noticeable differences. They both have similar 

mean value over the three kinds of noise input and have relatively low and similar standard 

deviations.

It is taken for granted that the smaller the noise input, the more sensitive the eye. The noise 

input in the luminance channel is far  lower than in the chroma and hue channel. This 

observation  matches  with  the  eyes  higher  sensitivity  to  changes  in  luminance  than  to 

colour. 

So according to the colour difference of the noise input for each channel, the following 

assumption could be made: the eye would discriminate chroma's differences better for red 

and blue, while it would discriminate the worst for yellow and mid-green. This is because 

the colour difference, in order to detect the just noticeable noise, would be the smallest for 

red and blue and the highest for yellow and mid-green. 

In analogy it can be assumed that the eye is most sensible for hue difference in magenta 

and the worst in cyan. Since the colour difference for the noise input in the luminance 

channel were almost the same for all colours, no assumption could be made about the eye's 

sensitivity in this case.

In  order  to  verify  the  assumptions  made  about  the  eye's  colour  sensitivity,  further 

investigations have been made by scaling the noise input out of the human visual model 

algorithm in chapter 5.

But first, since the Matlab® implementation of the visual noise measurement is getting 

satisfying results, it is going to be tested for practical uses. The two grey patches (from the 

example of chapter 1) are tested with it, as well as all the patches of the OECF-20 chart.
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 3.3 Praxis oriented Tests of the Visual Noise Measurement Model

 3.3.1 Test of the two Grey Patches

Relying now only on the results of the Matlab® implementation of the visual noise value 

formula of the CIELuv1976 colour space, the visual noise value of the two grey patches, 

already  measured  with  the  signal  to  noise  ratio  method  [paragraph  1.2],  has  been 

evaluated. For the grey patch taken at a sensitivity of 100ISO, the visual noise value is 2,65 

and for the one taken at sensitivity of 400ISO the visual noise value is 3,70, despite both 

being evaluated with the same value when measured with the signal to noise ratio. Here the 

visual noise values were calculated for a contrast sensitivity function scaled on 26 cycles 

per degree, for a 100% viewing on a 72dpi monitor.

According to the former investigation [paragraph 3.2.4], the threshold visual noise value 

is on average 1,71. This means that, for all visual noise values smaller than 1,71, noise can 

not be seen while, for all values greater, noise can be seen. So the two visual noise values 

of the two grey patches are in accordance with this, since noise can easily be seen on the 

patches. Moreover it could be observed that the patch taken at sensitivity of 400ISO had a 

more disturbing  noise  perception.  Its  higher  visual  noise  value  also  matches  with  this 

observation.

Because  of  its  satisfying  results,  the  visual  noise  measurement  from  the  Matlab® 

implementation of the CIELuv1976 formula has been integrated as part of the new version 

of the IE-Analyser®, software of the company  Image Engineering, for measurement of 

digital cameras. In the following paragraph, the visual noise measurements of the patches 

of the OECF20-test charts photographed for two different ISO-sensitivity settings of the 

camera Canon® Ixus65 are reported.
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 3.3.2 Example  of  the  Visual  Noise  Measurement  Model  used  in  the  Image 

Engineering Analyser®

As had been done before for the two grey patches, the patches of the OECF20-chart have 

been tested with the visual noise measurement model. The chart has been photographed 

with the camera  Canon® Ixus65 once at sensitivity of 100ISO and once at sensitivity of 

400ISO.  Then  it  was  run  through  the  visual  noise  measurement  tool  of  the  Image 

Engineering Analyser®. The two different formula evaluation of the visual noise value, 

Luv or Lab, were used and with three different settings, which corresponded to different 

resolution of the eye:

Setting 1: for a 100% viewing of the image on a monitor with 72 dpi seen at a distance of 

about 60cm (but at a minimum distance of 40cm), corresponding in this case to 26,39 

cycles per degree.

Setting 2: for a 10x15 cm print of the image with 300dpi seen at a maximum distance of 25 

cm, corresponding in this case to 48,68 cycles per degree.

Setting 3: for a 30x40 cm print of the image with 300dpi seen at a minimum distance of 25 

cm, corresponding in this case to 31,62 cycles per degree.

Figure 3.01: Representation of the OECF20 chart patches with corresponding referring number.
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 3.3.2.1 OECF20-Chart photographed with the Camera Canon ix65  at sensitivity of 

100ISO and 400ISO

Table 3.06: Visual noise of the 20 grey patches of the OECF20-chart.

patch

Sensititvity of 100ISO Sensitivity of 400ISO

Chinon Lab Formula Chinon Luv Formula Chinon Lab Formula Chinon Luv Formula

Set 1 Set2 Set3 Set1 Set2 Set3 Set 1 Set2 Set3 Set1 Set2 Set3

1 0,59 0,42 0,54 0,72 0,48 0,64 1,91 1,36 1,73 2,52 1,69 2,26
2 0,72 0,52 0,66 0,9 0,61 0,8 2,08 1,51 1,91 2,73 1,86 2,47

3 0,82 0,57 0,74 0,93 0,62 0,82 2,69 2 2,49 3,47 2,45 3,16
4 1,13 0,73 0,99 1,3 0,85 1,15 3,73 2,66 3,41 4,6 3,21 4,17

5 2,44 1,79 2,2 3 2,27 2,74 6,14 4,23 5,53 7,33 5,07 6,59
6 2,91 2,01 2,59 3,12 2,14 2,77 7,05 4,29 6,07 7,97 4,56 6,73

7 2,82 2,06 2,55 2,75 2,03 2,48 6,96 4,7 6,15 7,51 4,69 6,38
8 2,94 1,97 2,61 2,76 1,81 2,43 5,95 3,89 5,23 5,74 3,79 5,05
9 2,65 1,8 2,37 2,38 1,61 2,12 5 3,32 4,43 4,63 2,98 4,06

10 2,39 1,6 2,13 2,08 1,38 1,85 4,81 3,17 4,27 4,25 2,76 3,74
11 2,28 1,54 2,04 1,9 1,25 1,68 4,2 2,78 3,73 3,71 2,4 3,26

12 2,13 1,44 1,91 1,8 1,2 1,59 3,41 2,3 3,04 3,08 2,1 2,75
13 2,08 1,51 1,89 1,75 1,25 1,58 3,43 2,34 3,07 2,95 1,95 2,62

14 1,82 1,27 1,64 1,48 1,01 1,33 2,89 1,9 2,56 2,44 1,59 2,15
15 1,61 1,13 1,45 1,32 0,91 1,18 2,48 1,69 2,22 2,03 1,35 1,81

16 1,58 1,12 1,42 1,26 0,85 1,12 2,19 1,53 1,97 1,8 1,23 1,61
17 1,08 0,74 0,95 0,88 0,58 0,77 1,63 1,03 1,43 1,37 0,86 1,19

18 0,93 0,64 0,83 0,74 0,5 0,66 1 0,63 0,86 0,83 0,5 0,71
19 0,06 0,04 0,05 0,05 0,04 0,05 0,42 0,29 0,38 0,39 0,27 0,35

20 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.07: Visual noise of the 3 mid-grey patches of the OECF20 chart.

patch

Sensitivity of 100ISO Sensitivity of 400ISO

Chinon Lab Formula Chinon Luv Formula Chinon Lab Formula Chinon Luv Formula

Set 1 Set2 Set3 Set1 Set2 Set3 Set 1 Set2 Set3 Set1 Set2 Set3

1 2,47 1,67 2,21 2,18 1,45 1,94 4,84 3,25 4,3 4,43 2,98 3,92
2 2,47 1,7 2,22 2,14 1,43 1,9 4,48 2,99 3,98 3,98 2,59 3,51

3 2,27 1,53 2,02 1,99 1,34 1,77 4,06 2,63 3,57 3,61 2,31 3,15
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Graph 3.04: graphical representation of the visual noise value in function of the 20 patches

Graph 3.05: graphical representation of the visual noise value in function of the 20 patches
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Chapter 3:Visual Noise Measurements Model

 3.3.2.2 Brief analysis

Referring to chapter 3 at paragraph 3.2.4, after testing the threshold images through all 

three kind of noise, the mean value is 1,71 for the visual noise value calculated from the 

Luv formula, or 1,54 calculated from the Lab formula. This means that for visual noise 

values under 1,71 or 1,54, any incidence of noise should not be perceptible to the eye. Over 

these values, the noise becomes perceptible and, relating to the two sample grey patches, 

the noise is already visually unacceptable when it is above 2,5.

Figure 3.02 and 3.03 (showed following page) are prints, corresponding to setting 2, of the 

OECF20 chart photographed with the camera Canon® Ixus65 at an sensitivity of 100ISO 

and of 400ISO. 

In observing the printed images, and comparing the visual noise impression with the visual 

noise value for each patch (in bold font in table 3.06), and relying on the known reference 

values of the threshold images, it can be concluded that the visual noise value matches with 

the visual noise impression:

For the OECF20 chart photographed at a sensitivity of 100ISO, there are only four patches 

(patch 5 to 8) with a visual noise value above the threshold value set to 1,71, with the 

maximum visual noise value of 2,27 for the patch 5, which corresponds to a dark grey. 

This is actually the patch, which is the most disturbing for the eye, the three other patches 

show a slight just perceptible inhomogeneity of surface. Observing the other patches, no 

noise can be seen.

For the OECF20-chart photographed at a sensitivity of 400ISO, expect for the four last 

patches (patch 17 to 20), all the patches have a visual noise value above the threshold 

value. The most disturbing noise is seen on patch 5, 6, 7 and 8, which get the highest visual 

noise value (5,07; 4,56; 4,69; 3,79).

54



Chapter 3:Visual Noise Measurements Model

To  conclude,  the  visual  noise  measurement  has  been  validated  as  a  physiologically 

quantification of the colour noise and performs good results when applied in the praxis. 

Though it can only measure the noise for uniform patches, the evaluation of a complex 

scene is not possible. That is  why the S-CIELabDE2000 model has also been investigated, 

since it can measure the colour difference for a complex spatial frequency pattern.
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 4 .Chapter 4: S-CIELabDE2000 Model

 4.1 S-CIELabDE2000 Formula: Comparison of a "Noisy" Image with a 

"Noise-free" Image

Since the former model is only valid for uniform patches or images, the S-CIELabDE2000 

model  [20] has been investigated with threshold images, which contain rectangle spatial 

patterns with different contrast.

The  S-CIELabDE2000  model  is  also  based  on  the  human  visual  model,  so  by  the 

implementation  in  Matlab®,  the  first  eighth  steps  are  the  same  as  in  the  Noise 

Measurements but the last steps are different:

Step 9: the  filtered  tristimulus  values  are  transformed  into  the  CIELab1976  [8  p167] 

colour space according to the equations 3.01, 3.02, 3.09, and 3.10. This takes place for the 

"noisy" threshold image and its corresponding "noise free" image.

[L * free

a* free

b* free
]= CIELab 1976 formula⋅[ X Dfree

Y Dfree

Z Dfree
] (4.01)

[L *noise

a*noise

b*noise
]= CIELab1976 formula⋅[X Dnoise

Y Dnoise

Z Dnoise
] (4.02)

Step 10: Then for each corresponding pixel, the colour difference ΔE between the "noisy" 

threshold image and the "noise-free" image is processed according to the CIEDE2000 [23] 

[20].
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Compared to CIEDE1976, the CIEDE1994 formula includes lightness, chroma and hue 

weighting functions.  The CIEDE2000 formula  has  been derived from the CIEDE1994 

formula and “includes an interactive term between chroma and hue differences to improve 

performance of the blue region” [20 p431]. It also “includes a hue dependent function that  

corrects perceived hue differences”  [20 p431],  and a scaling factor for the a* axes for 

improving the performance of grey colours [20 p431].

The adjustment of the colour difference is made separately for each pixel, i.e., on a pixel-

by-pixel  basis  for  the  image  pair.  In  each  equation,  the  subscript  [x,y]  refers  to  x-y 

coordinates of each pixel of the image. When being processed together, the image pairs are 

referred to as the "free" noise image and the "noise" image [20 p431].

-  First  step: “is  an  adjustment  of  the  a*  axis  to  correct  for  the  colour  difference  

perception of low chroma colours” [20 p431]. This is done by “using a modified Gaussian  

curve on the mean chroma difference” [20 p431].

In order to calculate the Gaussian function, the arithmetic mean chroma between the "free" 

noise image and the "noise" image must first be calculated:

C * =a * ²[ x , y]b * ²[ x , y ] (4.03)

C *[ x , y ]=
C * free [ x , y ]C *noise[ x , y ]

2
(4.04)

Gaussian function:

G[ x , y ]=0,5⋅1−  C *[ x , y]
7

 C *[ x , y ]
7257  (4.05)

Equation 4.05 is then used to scale the a* axis:

a '=1G[ x , y]⋅a*[ x , y ] (4.06)
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-  Second  step: the  polar  coordinates  LCh are  then  calculated  from the  Lab cartesian 

coordinates:

L ' [ x , y]=L *[ x , y ] (4.07)

C '[ x , y]=a ' ²[ x , y ]b * ² [ x , y ] (4.08)

h ' [ x , y ]=arctan 
b*[ x , y ]

a '[ x , y ]
 (4.09)

- Third step: the colour difference between the "free" noise image and the "noise" image 

for each polar coordinate are then calculated: 

L '=L' free [ x , y]−L' noise[ x , y] (4.10)

C '=C ' free [ x , y ]−C ' noise [ x , y] (4.11)

h '=h ' free [ x , y]−h ' noise[ x , y ] (4.12)

“Care must  be taken when calculating hue angle differences between the "noise free"  

image and the "noisy" image if the hue angles reside in different hue quadrants. If the 

absolute difference between the two hue angles is greater than 180 degrees,  then it  is  

important to add 360 to the smaller of the hue angles” [20 p432]:

if ∣h ' [ x , y ]∣180 then min h ' free [ x , y] , h ' noise [ x , y]360 (4.13)

H=2⋅C ' free [ x , y ]⋅C ' noise[ x , y ]⋅sin h
'[ x , y]

2
 (4.14)
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- Fourth step: In order to calculate the other weighting functions, the arithmetic mean 

lightness,  chroma  and  hue-angle  between  the  sample  and  batch  images  must  first  be 

calculated:

L ' [ x , y]=
L' free[ x , y ]L' noise[ x , y]

2
(4.15)

C '[ x , y]=
C ' free [ x , y ]C ' noise[ x , y]

2
(4.16)

h ' [ x , y ]=
h ' free [ x , y]h ' noise [ x , y ]

2
(4.17)

“Again, care must be taken when determining the mean hue angle if the hue values for the  

pixel reside in different quadrants. {Equation 4.13} should be applied when calculating  

mean hue as well” [20 p432].

- Fifth step: “Weighting functions are then calculated to adjust for the perceived colour  

differences between lightness, chroma, and hue in the CIELAB space. These weighting  

functions are also calculated on a pixel-by-pixel basis” [20p432].

Lightness weighting function:

S L[ x , y]=1
0.015⋅L *[ x , y]−502

20L *[ x , y]−502 (4.18)

Chroma weighting function:

SC [ x , y]=10,045⋅C ' [ x , y] (4.19)

“The hue weighting is  a function of  both hue angle and chroma. First,  the hue angle  

dependency  is  determined,  using  {Eq  4.20}.  This  is  then  combined  with  the  chroma 

dependency in {Eq 4.21}” [20p432].
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Hue angle dependency function:

T [ x , y]=1− 0,17⋅cos h ' [ x , y]−30  0,24⋅cos 2h '[ x , y ]
 0,32⋅cos 3h ' [ x , y]6 − 0,20⋅cos 4h ' [ x , y]−63 (4.20)

Chroma dependency function:

S H [ x , y]=10,015⋅ C [ x , y]⋅T [ x , y] (4.21)

-Sixth step: “The blue region of CIELAB is known to be highly non-linear in regards to  

hue angle and chroma interaction. A rotation function has been created to compensate for  

this interaction” [20 p432]:

First a chromatic dependent term is determined:

RC [ x , y ]=2,0⋅ C * ' [ x , y ]
7

C * '[ x , y ]
7 257 (4.22)

This is followed by a hue angle dependency:

[ x , y]=30⋅e−h ' [x ,y ]−275 ° /252 (4.23)

Then the rotation function is applied:

RT [ x , y ]=−sin 2[ x , y]⋅RC[ x , y ] (4.24)

- Seventh step: Finally, the total colour difference for each pixel can be calculated:

 E[ x , y ]=  L ' [ x , y ]

K L⋅S L [x , y ]


2


C ' [ x , y]

K C⋅S C [ x , y ]


2


H ' [ x , y ]

K H⋅S H [ x , y ]


2

RT [ x , y ]⋅
C ' [ x , y ]

K C⋅SC [x , y ]
⋅
H ' [ x , y]

K H⋅S H [x , y ]
 (4.25)
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To resume the colour difference formula:

- The last term of the sum is the interactive term between chroma and hue differences [23].

-  SL,  SC,  SH are  the  weighting  functions  for  lightness,  chroma  and  hue  components 

respectively. The values calculated for these functions vary according to the position of the 

sample pair being considered in the space [23].

- RT: allows chromatic ellipses in some regions of the a*b* plane to be rotated [23].

- The parametric weights KL, KC KH can be adjusted to different viewing parameters such 

as textures, backgrounds, separations, etc. for the lightness, chroma, and hue components. 

In this case and “for most imaging applications, these weights are unknown, and should be  

all set to 1,0” [20 p432].

In fact,  the colour difference ΔE obtained between the noise-free image and the noisy 

image, is an error image: the "image of the noise pattern".

In order to simplify the evaluation, the obtained error image is reduced to a single number 

representing the overall  perceived difference.  “A common practice is to take the mean 

CIEDE2000 of the image's pixels. While useful in providing an overall idea, this can lead  

to error”  [20 p433]  evaluation. For example, it  is possible that an image with smooth 

uniform noise can have the equal mean error to an image with less noise, but which has a 

higher noise amplitude deviation. This would actually be more perceptibly noticeable. The 

spatial filtering itself should give greater weight to the lower frequency large shifts and less 

weight to the individual pixels, “although it is still possible to have identical mean errors” 

[20 p433]. “This can be in some ways avoided when comparing additional statistics such  

as  the  error  variance,  standard  deviation  or  median  (...)”  [20p433].  For  example, 

Fairchild recommend the error maximum for detecting threshold image differences  [20 

p433].
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Going back to the algorithm.

Step 11: Finally the mean value of the colour difference ΔE of all the pixels is calculated.

S ΔE =
∑

1

n

ΔE n

n
with n=number of pixels

(4.27)

The mean value of the colour difference  ΔE is taken as a quantification of noise, since 

noise can also be considered as a colour difference. Following the hypothesis, the mean 

value of the colour difference S ΔE of all the pixels of the image should be the same for 

each threshold image.

The median, standard deviation, variance and maximum error of the colour difference have 

also been calculated.
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 4.2 Investigation of the S-CIELabDE2000 Model

 4.2.1 Investigation with Threshold Images with rectangular spatial  Patterns 

with different Contrast

A  set  of  threshold  images  of  different  colours  have  been  evaluated  with  the  S-

CIELabDE2000.   The  calculations  were  for  mean  value,  median,  standard  deviation, 

variance, and maximum pixel value of the difference image – the difference between the 

noisy image and the noise free image. The set of colours were purple, blue, brown, yellow, 

green,  skin,  light-blue,  magenta,  mid-blue,  olive-green,  violet,  and  have  a  rectangular 

frequency pattern of 4 pixels per cycles and different contrast model 

Table 4.01: Setting of Chinon for the following evaluations (parameters and viewing conditions from the former 

diploma thesis work of Nicole Kidawa and Christina Simon   [11 pp38-39]  ):  

viewing distance 90cm

horizontal monitor resolution 640

vertical monitor resolution 480

monitor diagonal 21 inch set to 20 inch (used monitor is CRT)

calculated cycles per degree 12,37

monitor profile Monitorprofil080403.icc

In the three following tables (4.02, 4.03, and 4.04), the noise input as colour difference has 

been reported for the threshold images and their corresponding variance, as well as the 

colour  difference  ΔE calculated in  a  former experiment  [11] with  the  CIELabDE2000 

formula. Finally, the S-ΔE mean, median and standard deviation value of the pixel of the 

difference  image have been reported,  because  they  seem to  match the expectations  of 

having homogeneous values for the different threshold images. 

But the S-ΔE variance and maximum error value have not been reported (though according 

to  Fairchild  the  error  maximum  should  be  appropriate  for  detecting  threshold  image 

differences  [paragraph  4.1]).  This  is  because  these  values  for  the  different  threshold 

images did not seem relevant as they varied too greatly. For these two values the standard 

deviation is over 3,57 and the variance is over 12,75.
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 4.2.1.1 Noise Input as a Colour difference in the Luminance Channel

Table 4.01: mean value of the CIELabDE2000 and the mean, median and standard deviation value of the S-

CIELabDE2000 colour difference of the threshold images with noise input as a luminance difference.

Purple 1 has a contrast of 22%, while purple2 has a contrast of 35%. All the other colours 

have a contrast of 10%.

colour difference noise input 

ΔL

variance ΔE2000 S-ΔE2000 
mean

S-ΔE2000 
median

S-ΔE2000 
std dev

purple1 1,11 0,28 1,09 3,22 1,92 3,28

purple2 1,26 0,22 1,24 2,03 1,51 1,69

blue 0,78 0,14 0,75 1,72 1,39 1,26

brown 0,94 0,13 0,73 2,98 1,60 3,36

yellow 1,05 0,32 0,69 2,52 1,51 2,50

green 0,9 0,13 0,71 2,77 1,50 2,96

skin 0,83 0,12 0,66 1,88 1,19 1,84

light blue 0,81 0,15 0,75 2,03 1,29 2,09

magenta 0,81 0,15 0,75 1,66 1,25 1,39

mid-blue 0,89 0,26 0,78 1,58 1,35 1,04

olivegreen 0,9 0,22 0,69 2,36 1,35 2,51

violet 0,85 0,15 0,81 1,71 1,17 1,57

mean value 0,93 0,19 0,80 2,20 1,42 2,12

variance 0,02 0,00 0,03 0,31 0,04 0,63

std deviation 0,14 0,7 0,18 0,56 0,21 0,79

The variance and the standard deviation of the ΔE2000 value and the S-ΔE2000 median 

remain  low,  while  the  ones  of  the  S-ΔE2000 mean value  and the  S-ΔE2000 standard 

deviation are much higher. The ΔE2000 value and the S-ΔE2000 median  obtain similar 

levels of accuracy for the threshold images. and perform the best.

But investigating noise input as chroma difference and as hue difference as well, helps to 

get a better overview of the noise evaluation depending on the kind of noise input.
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 4.2.1.2 Noise Input as Colour Difference in the Chroma Channel

Table 4.02:  mean value of  the  CIELabDE2000 and the mean,  median and standard deviation of  the S-

CIELabDE2000 colour difference of the threshold images with noise input as a chroma difference.

colour difference noise input 

ΔC

variance ΔE2000 S-ΔE2000 
mean

S-ΔE2000 
median

S-ΔE2000 
std dev

purple1 8,98 8,4 2,61 2,55 1,76 2,42

purple2 11,2 10,53 3,2 4,02 2,42 4,18

blue 7,57 8,05 2,57 1,44 1,20 0,94

brown 6,07 7,7 2,74 1,95 1,70 1,31

yellow 11,8 7,09 3,12 1,19 1,02 0,81

green 9,9 11,25 3,76 3,08 2,60 2,18

skin 5,28 5,63 3,72 1,79 1,52 1,27

light blue 6,39 13,16 2,09 1,80 1,47 1,32

magenta 7,74 6,54 2,09 1,28 1,07 0,85

mid-blue 7,18 7,77 2,57 1,18 1,02 0,68

olivegreen 9,54 11,69 4,15 3,17 2,69 2,21

violet 8,46 10,35 2,87 2,48 1,95 1,98

mean value 8,34 9,01 2,96 2,16 1,70 1,68

variance 4,06 5,39 0,43 0,83 0,61 0,99

std deviation 2,02 2,32 0,65 0,91 0,95 0,99

The S-ΔE2000 mean and standard deviation value have the highest variance and standard 

deviation, while the S-ΔE2000 median value and the ΔE2000 value have the lowest (but in 

comparison to their values in the luminance channel, there are greatly higher).

Although the S-ΔE2000 median value and the ΔE2000 value still achieve the most similar 

values over their threshold images, their higher standard deviation and variance shows that 

a homogeneous quantification of the threshold images is in this case not as good achieved 

as for noise input in the luminance channel.
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 4.2.1.3 Noise Input as Colour Difference in the Hue Channel

Table 4.03: mean value of the CIELabDE2000 and the mean, median and standard deviation values of the S-

CIELabDE2000 colour difference of the threshold images with noise input as a hue difference.

colour 
difference

noise 

input Δh

variance ΔE2000 S-ΔE2000 
mean

S-ΔE2000 
median

S-ΔE2000 
std dev

purple1 4,79 2,81 2,24 1,23 0,95 0,99

purple2 6,17 9,21 2,87 2,63 1,48 2,81

blue 6,01 5,62 3,25 1,86 1,54 1,31

brown 13,39 4,24 4,55 2,79 2,10 2,29

yellow 6,82 12,02 3,93 2,05 1,74 1,44

green 8,55 10,94 2,83 2,14 1,54 1,84

skin 13,6 2,47 2,57 2,09 1,57 1,74

light blue 14,22 1,48 1,84 2,01 1,62 1,53

magenta 3,84 2,69 1,84 0,78 0,69 0,47

mid-blue 4,32 5,45 3,25 1,54 1,31 1,00

olive green 9,88 9,35 2,77 1,89 1,52 1,39

violet 8,29 8,99 3,80 1,44 1,14 1,09

mean value 8,32 6,27 2,98 1,87 1,43 1,49

variance 13,78 13,44 0,69 0,32 0,14 0,39

std deviation 3,71 3,67 0,83 0,57 0,37 0,63

Here the variance and standard deviation are, in general, smaller than the one from the 

chroma noise input, but still much higher than the one from the luminance noise input.

While the S-ΔE2000 median value gets the lowest variance and standard deviation, the 

ΔE2000 value has the highest variance and standard deviation. In this case only the S-

ΔE2000  median  value  performs  the  best  by  getting  the  most  similar  values  over  the 

threshold images.
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To resume, for each noise input channel taken individually, the S-ΔE2000 median value 

performs the best in the luminance, chroma and hue channel. The ΔE2000 value performs 

better  than  S-ΔE2000  mean  and  standard  deviation  value  only  for  the  luminance  and 

chroma noise input channel.

But in order to compare the evaluation of noise over the different kind of input, the mean 

values  of  the  colour  differences  of  the  threshold  images  have  been  reported  in  the 

following table.

Table 4.04: Mean value of the colour difference for all the threshold images.

noise input ΔE2000 S-ΔE2000 mean S-ΔE2000 median S-ΔE2000 std dev

ΔL 0,80 2,20 1,42 2,12

ΔC 2,96 2,16 1,70 1,68

Δh 2,98 1,87 1,43 1,49

mean value 2,25 2,08 1,52 1,76

variance 1,57 0,03 0,02 0,10

std deviation 1,25 0,18 0,16 0,32

For the threshold images over the three kind of noise input, the S-CIELabDE2000 values 

have similar values. This is not the case for the ΔE2000 value, where the mean value of the 

threshold images in the luminance channel is 2 unit counts smaller than the mean value in 

the chroma and hue channel.

For the different kind of noise the S-ΔE2000 mean, median and standard deviation values 

are performing better than the ΔE2000 value. The S-ΔE2000 median value is performing 

better overall because it has the lowest variances and standard deviations in each noise 

channel with also the lowest variance and standard deviation for the mean values of the 

threshold images over the three different kind of noise.

As a first conclusion, the S-ΔE2000 median value performs the best by quantifying the 

threshold images with the similar values. So it is assumed that the S-ΔE2000 median value 

would be the best appropriate to quantify noise as a colour difference in a physiological 

manner. 
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In order to have a more accurate approach to the first evaluations, further investigation has 

been made into the S-CIELabDE2000 colour difference, with a focus on its dependence on 

frequency pattern and contrast.

 4.2.2 Further Investigation: Colour Difference in function of the Contrast and 

the Frequency Patterns

An extended experiment has been conducted with the colours: cyan, red, mid-blue, light 

grey, and mid-green, each colour getting a rectangular frequency pattern of either 4, 6 or 

10 pixels and each a contrast of either 3, 10 or 22%. So there are 9 different patterns of 

contrast and frequency for each colour. In table 4.05, for the colour mid-blue, the median 

value  of  the  colour  difference  of  the  difference  image  over  the  9  patterns  has  been 

calculated. The behaviour of the other tested colours is similar; their results have been 

reported in appendix F. A similar value between the 9 different patterns is expected, if the 

S-CIELabDE2000 can fulfil the thesis' assumption.

Table 4.05: median value of the colour difference over the pixels for mid-blue for noise input in the luminance, 

chroma, and hue channel for each of the 9 patterns of contrast and frequency.

frequency in 

pixels pro 

cycles

contrast in 

%

noise input 

ΔL

S-ΔE200 

median

noise input 

ΔC

S-ΔE200

median

noise input 

Δh

S-ΔE200

median

4 3 0,78 1,14 8,32 0,92 4,28 1,08

6 3 0,78 1,14 8,95 0,98 4,60 1,15

10 3 0,72 1,14 8,07 0,89 4,13 1,08

4 10 0,9 1,24 9,68 1,11 4,87 1,29

6 10 0,97 1,55 10,39 1,21 5,14 1,37

10 10 0,82 1,23 8,79 1,00 4,48 1,20

4 22 1,22 2,17 11,58 1,79 5,68 2,03

6 22 1,11 2,14 11,19 1,63 5,13 1,78

10 22 0,95 1,85 10,18 1,51 5,33 1,91

For all three kind of noise, the median value of colour difference is actually increasing with 

increasing contrast.  Namely,  it  is  increasing to 1  unit  count  from 3% contrast  to 22% 

contrast and remains almost constant depending on the frequency pattern (decreasing with 

68



Chapter 4: S-CIELabDE2000 Model

increasing frequency patterns, with sometimes a maximum at 6 pixels pro cycle, while the 

highest variation occurs for higher contrast).

If the S-CIELabDE2000 model has adapted perfectly to the human visual system, it would 

be expected that all the colour difference S-ΔE2000 median values   remain constant, but 

this  is  not  the  case.  The  S-CIELabDE2000 model  can  evaluate  visual  colour  noise  of 

images with spatial frequency contents as colour difference, but it shows some limitations.

Since the S-CIELabDE2000 model seems, for the expectations, to perform the best for low 

contrast frequency pattern, uniform patches have been run through it.

 4.3 Investigation of the Colour Difference for Uniform Patches

 4.3.1 Investigation with Threshold Images

Here the threshold images are the same as in chapter 3  [paragraph 3.2] as well as the 

setting of Chinon (table 3.01).

Table 4.06: mean value, variance and standard deviation of the threshold images for the ΔE2000 value and 

the S-ΔE2000 mean value, variance, standard deviation, median and maximum error.

noise 
input

for all 
threshold 

images
ΔE2000

S-ΔE2000

mean value variance std 
deviation

median maximum 
error

ΔL

mean value 0,58 0,71 0,20 0,42 0,61 3,05

variance 0,02 0,03 0,02 0,02 0,02 0,91 

std dev 0,14 0,17 0,13 0,13 0,15 0,95 

ΔC

mean value 1,86 0,77 0,22 0,44 0,67 3,39

variance 0,53 0,06 0,04 0,04 0,04 1,97

std dev 0,73 0,25 0,20 0,19 0,20 1,40

Δh

mean value 2,72 0,94 0,41 0,62 0,80 4,47

variance 0,48 0,06 0,04 0,03 0,04 1,02

std dev 0,69 0,24 0,20 0,17 0,20 1,01
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Looking first at the mean value of the colour difference values over the three kind of noise 

input, the S-ΔE2000 mean, variance, standard deviation and median value have relative 

similar values with low variance and standard deviation. However, this is not the case for 

the  S-ΔE2000  maximum  error  value  and  the  ΔE2000  value  (this  has  already  been 

investigated  in  the  former  diploma  thesis,  here  they  just  have  been  reported  for 

comparison). 

These results match the thesis of similar noise value for the threshold images. To conclude, 

except for the S-ΔE2000 maximum error value, the S-CIELabDE2000 can quantify noise 

as a colour difference in a visual manner for uniform colour patches.

 4.3.2 Brief conclusion

The colour difference of the S-CIELabDE2000 model is used as a quantification of the 

noise.  For  threshold  images  with  frequency  pattern,  the  S-CIELabDE2000  shows  a 

tendency  to  get  similar  values  only  for  the  S-ΔE2000  median  value,  but  further 

investigation shows that it  has some limitations though. The quantification of threshold 

images as  uniform patches is  getting similar  values for the S-ΔE2000 mean,  variance, 

standard deviation and median values, and not, as it has been suggested, for the S-ΔE2000 

maximum error.

In order to better compare the two models and have an overview of our investigations, the 

results from chapter 3 and 4 have been summed up in chapter 6. But first in chapter 5, by 

means of the two models, it is investigated if the algorithm can depict the eye sensitivity 

and colour discrimination in some way.
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 5 .Chapter  5:  Noise  Scaling  as  a  Description  of  the  Eye 

Sensitivity

The investigation of the visual noise measurement and the S-CIELabDE2000 models, in 

chapter 3 and 4, shows that the algorithm of the human visual system is performing quite 

good for noise evaluation of uniform patches. In order to get a more accurate idea of how 

well the algorithm describes the human visual system, the quantification of noise is scaled 

as a function of noise input as a colour difference for the colours red, green, blue, cyan, 

magenta, and yellow, and for each kind of noise input.

 5.1 Visual Noise as a Function of the Noise Input

Here, not only are the threshold images evaluated with the models, but also the entire noisy 

images generated by Shiraz with steps of ΔE=ΔL=0,4 for noise input in the luminance 

channel  and  steps  of  ΔE=ΔC=Δh=0,6 for  noise  input  in  the  chroma and hue  channel. 

Because both models perform well for uniform patches, the following colours have been 

chosen:  red,  green,  blue,  cyan,  magenta and yellow.  So these noisy images have been 

evaluated with the Photoshop® plugin and with Chinon for both formulae (Lab and Luv), 

as well as with the S-CIELabDE2000 formula.

Here only the Chinon's graphs are shown and only the results for the visual noise formula 

along  the  Luv  axes  for  several  reasons.  First  because  the  Matlab®  implementation 

performed better than the Photoshop® Plug-in. Second because the visual noise formula 

was  actually  developed  for  the  CIELuv1976  colour  space,  although  it  has  also  been 

investigated with a visual noise formula based on the CIELab1976, which also performs 

quite  well.  Finally,  although  the  S-CIELabDe2000  model  performs  well  for  uniform 

patches,  it  was  actually  developed  to  be  able  to  deal  with  complex  spatial  frequency 

patterns.
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But  note  that  the  noise  scaling  graphs  for  the  Photoshop®  Plug-in,  the  Matlab® 

implementation with the formula CIELab1976 and the S-CIELabDE2000 model have been 

reported in the appendix E.

 5.1.1 Visual Noise Scaling along the Luminance Channel

Graph 5.01: Scaling of the visual noise value in function of the noise input along the luminance channel.

The noise input is from ΔE=ΔL=0 to ΔE=ΔL=10 and is added in steps of ΔE=ΔL=0,4. The 

scaling of the visual noise values depends on the colours: from 0 (for no noise input) to 30 

for blue to 60 for red and green. The other four colours have their maximum noise values 

(for a ΔE=10) in a range from 30 to 45.

The fact that the modulation of the visual noise values is different for the colours could 

reflect the eye's sensitivity and its discrimination's behaviour. The eye seems to be the most 

sensitive for red and green, and the least for blue and yellow. This means that the eye 

would better discriminate luminance differences for red colours than for yellow colours.

The graph 5.01 can also explain the singular behaviour for the determination of the visual 
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Chapter 5: Noise Scaling as a Description of the Eye Sensitivity

noise value of the threshold image of red, which had a very high visual noise value in 

comparison to the mean visual noise value over the other threshold images (over 1 unit 

count) [paragraph 3.2.1]. The function for red shows the biggest slope: a small luminance 

difference as noise input implies a big difference of the visual noise value.

As it has already be noticed, the noise input of the luminance channel is almost the same 

for all the threshold images, from 0,4 to 0,5, and 0,6 for red. Putting the Shiraz's slider 

above the setting of 1,5 unit is already showing a clear noise pattern. The slider steps of 

luminance  noise  input  are  perhaps  too  coarse:  ΔE=ΔL=0,2  with  a  maximum value  of 

ΔE=10, which is significantly too high. Although the variance for the determination of the 

threshold images for the luminance noise input is very low, the scaling of the noise input 

ΔE=ΔL could be more precise.  This would allow a more precise  determination of the 

threshold and consequently of the visual noise value. Doing so could maybe avoid a too 

high visual noise value for red, as mentioned in the previous paragraph.

It could be assumed that the different modulation of the scaling of the different colours 

could depict the eye's sensitivity. However, the noise input determined for the threshold 

images are similar, so no conclusion can be made about this assumption yet.
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 5.1.2 Visual Noise Scaling along the Chroma Channel

Graph 5.02: Visual noise value in function of the noise input in the chroma channel

The chroma noise input is scaled from ΔE=ΔC=0 to ΔE=ΔC=15 and is added in steps of 

ΔE=ΔC=0,6. Although the colour's difference is higher for chroma than for luminance, the 

scaling of the visual noise is smaller (11 for the maximum value of red – which is less than 

the half of the smallest scaling in luminance for blue with 30 - and only 3 for the maximum 

values of yellow). This matches with the behaviour of the eye, which discriminates the 

chroma's differences a lot worse than the luminance's differences. This is in accordance 

with the high variances for the determination of the threshold images and the higher values 

of  colour  difference  for  the  threshold  images  for  the  chroma  channel  than  for  the 

luminance channel. This observation is also made by Nicole Kidawa and Christina Simon 

[11].

According to the graph 5.02, the red, cyan, magenta and green colours have the highest 

visual noise scaling. This means that the eye would better discriminate chroma differences 

for these colours, than for blue and yellow. In order to check if this a reliable statement, the 

required noise input for the threshold images is compared with the slope of the curves.
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Table 5.01 shows the setting of the Shiraz slider for noise input for the threshold images: 

the smaller the colour difference input the more sensitive the eye is for the specific colour. 

For each colour, the noise input is ranked from most sensitive to least sensitive. The noise 

scaling  curves  is  also  ranked  from most  sensitive  (having  the  highest  slope)  to  least 

sensitive (having the lowest slope) for the three variants of the visual noise measurement 

model and the S-CIELabDE2000 model.

Table 5.01: noise input in the chroma channel for the threshold images and corresponding ranking from the 

smallest noise input to the highest, as well as ranking of the slope of the curves for the tested colours from the 

highest to the lowest.

Colour Noise input 
ΔC

Ranking of 
the noise input

Visual noise model

Photoshop Chinon 
Luv

Chinon 
Lab

S-CIELabDE
2000

red 4,3 2 1 1 1 2

green 10,5 5 4 4 3 4

blue 4,1 1 3 5 5 3

cyan 5,2 3 5 2 1 1

magenta 5,6 4 2 3 3 5

yellow 15 6 6 6 5 6

For the ranking of Chinon with the formula Lab, red and cyan were having the same slope 

as well as green and magenta, and yellow and blue, that's why they are ranked with same 

number.

According to the noise input for the threshold images, which is considered as reference for 

the comparison, the eye is actually the most sensitive for red, blue, cyan and magenta and 

less for green and yellow. There is no graph which would match this ranking. For the red, 

blue, cyan and magenta colour, this may be explained, that the noise input is very similar 

for the threshold images, so some imprecisions could be tolerable. Moreover the graphs all 

have their own ranking with the tendency that yellow has the lowest slope and red the 

highest, which matches with the noise input ranking.
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The fact that the maximum scaling of the visual noise values of yellow reaches only 1,75 

(which is smaller than the mean visual noise value for chroma of 1,95) is in accordance 

with the fact that the tested persons doubted to see noise at all. Indeed the visual noise 

values  have  the  tendency  to  grow  very  slowly  and  eventually  become  constant. 

Consequently whatever the noise input, it is difficult to tell if there was some change in the 

colour difference or not. This explains the difficulty of the tested person to tell exactly 

when the noise threshold appears (bigger variance for the setting of the noise input for the 

yellow colour for example 15,15).

To conclude, no scaling of the noise with both model and variants  of the visual noise 

measurement model matches totally with the ranking of the noise input for the threshold 

images. However, there are some similarities. This shows that the noise scaling with the 

human visual algorithm tends to be only a coarse description of eye discrimination for 

chroma.
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 5.1.3 Visual Noise Scaling along the Hue Channel

Analogue observations done in the precedent paragraph can be made for noise input in the 

hue channel.

Graph 5.03: Visual noise value in function of the noise input along the hue channel

Here also the hue's difference goes until ΔE=Δh=15 and is added in steps of ΔE=ΔL=0,6. 

The visual noise scaling is twice smaller for the highest hue scaling (magenta) than the 

smallest luminance scaling (blue). This observation matches with the fact that the eye is 

more sensitive to luminance variations than colour ones and, in this case, hue differences.

According  to  the  curves'  slopes,  for  variations  in  hue,  the  eye  would  have  the  best 

discrimination in magenta, followed by yellow, then by green, red and blue, and at last by 

cyan. In table 5.02 the same ranking as in table 5.01 has been done, but this time for noise 

input in the hue channel.
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Table 5.02: noise input in the hue channel  for the threshold images and corresponding ranking from the 

smallest noise input to the highest, as well as ranking of the slope of the curves for the tested colours from the 

highest to the lowest.

Colour Noise input Δh
Ranking 

of the 
noise input

Visual noise model

Photoshop Chinon Luv Chinon Lab
S-CIELabDE

2000

red 7,9 5 4 4 4 2

green 5,8 2 3 3 3 4

blue 6,2 4 5 5 5 5

cyan 11,2 6 6 6 6 6

magenta 2,8 1 1 1 1 3

yellow 5,9 3 2 2 2 1

According to the noise input for the threshold images, which is considered as reference for 

the comparison, the eye is actually the most sensitive for magenta, then green, yellow and 

blue and at last for red and cyan. Here the three variants of the visual noise measurement 

model are all having the same ranking of the slopes. And it can be assumed that it matches 

the ranking of the noise input. Indeed green and yellow are inverted as well as red and 

blue, but in both case the noise input value Δh between the two pairs of colours are very 

similar,  which  can  lie  in  the  measurement  of  the  noise  input  threshold  and  which  is 

tolerable.

That  is  why  the  visual  noise  scaling  with  the  visual  noise  measurement  model  can 

represent, to some extent, the eye's sensitivity and colour discrimination for hue. 
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 5.1.4 Comparing Noise Scaling and Facility to determine Threshold Images

As it has already been noticed for chroma, the higher the colour difference ΔE=ΔC as noise 

input, the higher the variances are by determining the threshold image. This means that the 

higher the colour difference gets, the more difficult it is to determine an exact threshold 

image.

The following table shows the values of the graph 5.03 - the visual noise values in function 

of  the  noise  input  in  the  hue  channel.  The  cell  filled  with  colour  corresponds  to  the 

determined threshold image.

Table 5.03 contains the data corresponding to the graph 5.03 for the scaling of noise input in the hue channel.

Δh VN red VN green VN blue VN cyan VN magenta VN yellow
0,00 0,00 0,00 0,00 0,00 0,00 0,00
0,60 0,47 0,43 0,29 0,13 0,56 0,54
1,20 0,52 0,61 0,46 0,19 1,05 0,93
1,80 0,62 0,83 0,61 0,25 1,54 1,32
2,40 0,75 1,04 0,76 0,32 2,01 1,70
3,00 0,89 1,25 0,92 0,38 2,48 2,08
3,60 1,13 1,46 1,08 0,43 2,97 2,46
4,20 1,31 1,68 1,24 0,48 3,43 2,85
4,80 1,50 1,90 1,38 0,52 3,91 3,21
5,40 1,70 2,13 1,52 0,56 4,39 3,59
6,00 1,92 2,36 1,68 0,61 4,86 3,96
6,60 2,11 2,61 1,81 0,65 5,34 4,33
7,20 2,30 2,84 1,98 0,72 5,81 4,71
7,80 2,53 3,07 2,11 0,78 6,27 5,08
8,40 2,73 3,31 2,27 0,84 6,74 5,45
9,00 2,98 3,55 2,41 0,90 7,22 5,82
9,60 3,15 3,80 2,57 0,96 7,67 6,20
10,20 3,36 4,05 2,72 1,03 8,15 6,58
10,80 3,61 4,29 2,88 1,08 8,61 6,92
11,40 3,83 4,53 3,04 1,16 9,06 7,30
12,00 4,04 4,78 3,17 1,24 9,53 7,67
12,60 4,30 5,02 3,33 1,29 9,99 8,04
13,20 4,54 5,31 3,50 1,36 10,45 8,40
13,80 4,80 5,57 3,64 1,44 10,92 8,78
14,40 5,01 5,83 3,81 1,52 11,36 9,14
15,00 5,28 6,09 3,95 1,60 11,79 9,50
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Relying on the table 3.04, the noise input ΔE=Δh was 5,9 for yellow and 11,2 for cyan. 

The hue difference here is obviously more difficult to detect for cyan than for yellow. As a 

matter of fact, the variance to determine the noise image threshold is 2,71 for yellow and 

12,72 for cyan. This relation between high variance for determining the threshold images 

with the difficulty to detect it can be highlighted thanks to the analysis of the table 5.03.

Here relying on table 5.03, it can be noticed that because of the different scaling of the 

visual noise value for the different colours, an error on the determination of the threshold 

images (ΔE value) does not have the same impact on the visual noise value. An error of a 

ΔE=1,2 would lead to a ΔVN of 1 for yellow while for cyan only to a ΔVN of 0,2. But as it 

has  been  just  reported  before,  the  image  threshold  for  the  cyan  was  more  difficult  to 

determine  with accuracy.  So the imprecision is,  in  this  case,  higher  but  has  a  smaller 

impact.

The same observations can be made for the noise input in chroma.
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 5.2 Noise Scaling between the Chroma and Hue Noise Input

The former investigations show that the noise scaling with the human visual algorithm is 

not always able to precisely describe the eye's sensitivity over the different colours for each 

noise  input  channel:  luminance  and chroma are  coarse  description,  hue  matches  more 

precisely the eye sensitivity. Here the noise scaling is not compared between the colour for 

one noise input channel, but for each colour the noise scaling is compared between the 

luminance, chroma and hue channel.

When comparing the visual noise scaling with the graph 3.01. 3.02 and 3.03, the luminance 

channel had a higher scaling for the visual noise value (5 to 10 times higher), although the 

maximum luminance noise input is ΔL=10, while for chroma and hue it is ΔC=Δh=15. 

Moreover the noise input of luminance for threshold images is smaller (in the range of 0,5) 

than the noise input of the chroma and hue (between 3 and 15).

Both observations contribute to the statement that the eye is more sensitive for differences 

in the luminance channel than in the colours channel, and this matches with the human eye 

sensitivity characteristics.

Since the visual noise scaling of the chroma and hue are more similar, it is more difficult to 

tell in which case the eye is more sensible in hue or chroma depending on the colour. The 

slopes of the visual noise scaling are compared between chroma and hue for each colour. 

For example, the graph 5.04 shows the noise scaling with Chinon with the Luv formula 

between the chroma and hue noise input for the colour red.

The same graphs have been done for the five other colours: green, blue, cyan, magenta and 

yellow. They have also been done for each variant of the visual noise measurement model 

(Photoshop®  Plug-in,  Chinon  with  the  Luv  and  Lab  formula)  and  for  the  S-

CIELabDE2000 model.
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Graph 5.04: Visual noise value from Luv Chinon in function of the noise input for chroma and hue difference 

for the colour red.

The graph 5.04 shows that for red the eye should be more sensible for colour difference in 

chroma than in hue, since the slope of the noise scaling is higher for chroma than for hue.

In table 5.04, for each colour, the noise input for the threshold is reported as a colour 

difference for chroma and hue.  The comparison between both channels for each colour 

tells if the eye is more sensitive for chroma or for hue.  The smaller the noise input, the 

more sensitive the eye is.  The comparison between the slope of chroma and hue for each 

colour and each model has been reported. The higher the slope of the visual noise scaling, 

the more sensitive should be the eye.
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Table 5.04: Comparison of the noise input in chroma and in hue for the threshold images for the colour red, 

green, blue, cyan, magenta and yellow, and comparison between the slope of chroma and hue for each colour 

for the three variants of the visual noise measurement model and the S-CIELabDE2000 model.

Colour

Noise input

ΔC Δh

Comparison 
of the noise 

input

visual noise measurement

Photoshop 
Plug-in

Chinon Luv Chinon Lab S-CIELabDE
2000

red 4,3 7,9 C > H C > H C > H C > H H > C

green 10,5 5,8 H > C H > C H > C H > C H > C

blue 4,1 6,2 C > H C > H equal H > C H > C

cyan 5,2 11,2 C > H equal C > H C > H C > H

magenta 5,6 2,8 H > C H > C H > C H > C H > C

yellow 15 5,9 H > C H > C H > C H > C H > C

According  to  the  experimental  results  of  the  noise  input,  the  eye  is  more  sensitive  in 

chroma than in hue for the colour: green, magenta and yellow. At the same time, it is more 

sensitive in hue than in chroma for the colour: red, blue and cyan

The noise input for the threshold images, which is taken as reference, is compared with the 

ranking of the slope of the noise scaling between the chroma and hue for each colour (in 

this case: red, green, blue, cyan, magenta, yellow):

The Chinon Lab variant performs the best, matching exactly with the comparison order of 

the noise input. The Chinon Luv variant assumes the eye sensitivity between chroma and 

hue for blue as equal,  while the noise input differs with 2 ΔE units.  This can still  be 

regarded  as  an  acceptable  range,  and  that  is  why  the  Chinon  Luv  variant  could  also 

perform quite well. The Photoshop® Plug-in assumes that the sensitivity between hue and 

chroma for  cyan  is  equal,  although the  noise  input  differs  by  6  ΔE units,  and  the  S-

CIELabDE2000 model inverts the sensitivities for red, although the noise input differs by 4 

ΔE units.

To conclude,  the  used  human  visual  algorithm performs  good  in  describing  the  eye's 

sensitivity between the luminance, chroma and hue channel for each colour. It shows only 

slight imprecisions depending with which variants of the model the algorithm has been 

implemented.
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 5.3 Brief conclusion

In order to evaluate how good the used human visual algorithm describes and matches with 

the eye sensitivity, the ranking of the noise input as colour difference for the threshold 

images is compared with the ranking of the slopes of the visual noise scaling with the 

human visual scaling. This is firstly done for each kind of noise input (luminance, chroma, 

and hue) over the colours, and then done for each colours over the three kind of noise 

input.

Firstly it has been noticed that the ranking of the slopes between the colours for each noise 

input channel varies depending on the model, sometimes showing some similarities for the 

slopes' ranking. But comparing it to the ranking of the noise input for the threshold images, 

there was no significant match for chroma and no real conclusion for luminance could be 

done. For hue, the visual noise measurement model showed a satisfying matching, and the 

visual noise scaling with the used human visual algorithm could be regarded as a good 

description of the eyes sensitivity for hue differences.

Secondly  it  has  be  noticed  that  the  magnitude  of  the  slope  of  the  noise  scaled  with 

luminance noise input were far higher (5 to 10 times higher) than the one scaled with the 

chroma or hue noise input. This is fulfilled by the two models. This matches with the fact 

that the eye is more sensitive for luminance differences than for colour differences. Then 

the  eye's  sensitivity  between  the  hue  and  chroma  was  compared  for  each  colour. 

Comparing the ranking of the slopes with the ranking of the noise input values for the 

threshold, the rankings were matching in almost every case, especially the best  for the 

Matlab® implementation of the visual noise with the Lab formula.

To conclude, the algorithm is not accurate enough in order to describe the eye's sensitivity 

between the colours in each noise input channel: luminance, chroma and hue. But it is 

already describing precisely the eye's sensitivity between the noise input channel for each 

colour.  These  imprecisions  may  still  lie  in  an  inaccurate  weighting  of  the  chromatic 

contrast sensitivity function.
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 6 .Chapter 6: Conclusion

 6.1 Quantification  of  noise:  The  Stand  of  the  Research  and  the  new 

Approach: an Algorithm describing the Human Visual System

 6.1.1 Stand of the Research

Since noise is a prevalent phenomena in digital imaging, a method to quantify colour noise 

in order to make reliable  statement  about  the seen image quality has to  be found and 

developed.

The signal to noise ratio method proposed in the normative part of the ISO 15739:2002(E) 

paper  [16] is not giving acceptable results.  In looking at  the example of the two grey 

patches from chapter 1, for two different kind of noise, one being more disturbing than the 

other, the signal to noise ratio method evaluates them with the same value. This does not 

match the visual impression, so the signal to noise ratio can not be considered as reliable 

and other methods have to be investigated.

In the diploma thesis of Michael Bantel and Jan Fischer, as well as of Nicole Kidawa and 

Christina Simon, with the self java® implemented software, Shiraz, the colour noise has 

been investigated, being quantified as a colour difference from the CIELabDE1976, 1994 

and 2000. This approach relies on the assumption that the CIELab colour space should be a 

visually uniform space to describe colour. Actually, as mentioned by some technical papers 

[19] [22], this is not the case, and as the results of these diploma thesis have shown, the 

quantification of colour noise matching the eye impression using the CIELab colour space 

has not been successful.
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 6.1.2 The new Approach: an Algorithm describing the Human Visual System

The new method investigated in this diploma thesis relies on the implementation of an 

algorithm trying to describe the human visual system. After doing a chromatic adaptation, 

the tristimulus values of a the image pixels are transferred into the opponent colour space, 

which are then spatially filtered with the contrast sensitivity function. This describes how 

the human visual system processes the colour signals. The filtered opponent colour signals 

are then transferred back to filtered tristimulus values, which can then be transformed in 

colour space that describes the way in which the eye recognises colour .Since the eye 

interprets colour in terms of luminance, chroma and hue,: CIELuv1976 or CIELab1976 

(CIELCh1976 is the polar representation) are used and, from here the colour noise can 

finally be quantified.

Two models are based on this algorithm to quantify the colour noise: 

• Firstly the visual noise measurement model, which as it is proposed in the appendix C 

of the ISO 15739:2002(E) [16] and the Hung Paper [17], which then evaluates the noise 

as a so called visual noise value, is the weighted sum of the standard deviations along 

the L*, u* and v* axes from the CIELuv1976 colour space for all the image pixels of a 

uniform colour patch.

• Secondly  the  S-CIELabDE2000  model,  which  then  evaluate  the  noise  as  a  colour 

difference pixel by pixel between a noisy image and its corresponding noise free image.

 6.2 Results of the Noise Quantification with the two Models

Experiments performed on many observers with the Shiraz software have permitted to 

define  threshold  images.  These  have  been  determined  as  images  containing  a  just 

noticeable noise impression for different kind of noise input as colour difference in the 

luminance, chroma and hue channel. The assumption is that the threshold images stand for 

the same noise impression, so a reliable method quantifying the colour noise in a visual 

manner should evaluate the threshold image with the same value. The threshold images 

have been run through both models.
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 6.2.1 Quantification of Noise with the Visual Noise Measurement Model

 6.2.1.1 Tools of the Visual Noise Measurement Model

The visual noise measurement model can be run as a Plug-in in Photoshop®, but has also 

been  implemented in Matlab® as the weighted sum of the standard deviations along the 

L*, u* and v* axes from the CIELuv1976 colour space. It has also been evaluated along 

the L*, a* and b* axes of the CIELab1976 colour space. The formula for the visual noise 

value has actually been developed for the CIELuv1976 colour space, because noise can be 

seen as local colour difference. In addition some technical papers recommend the use of 

the CIELuv1976 rather than the CIELab1976 for micro colour differences  [paragraph 

1.1.3.2].

The  differences  in  the  algorithm  between  the  Photoshop®  Plug-in  and  the  Matlab® 

implementation of the visual noise measurement model are due to the use of a different 

contrast sensitivity function and the chromatic adaptation matrix [paragraph 2.5.2].

The threshold images have been run through the three variant tools of the visual noise 

measurement model.

 6.2.1.2 Evaluation  of  the  Threshold  Images  with  the  Visual  Noise  Measurement 

Model.

Testing the algorithm with two different tools, the Matlab® implementation gives better 

results by getting similar visual noise value for the threshold images. This may be due to 

the use of a different contrast sensitivity function, with the one used in Matlab®, proposed 

by Fairchild [20], being more accurate.

There are no real differences between the implementation of visual noise value formula 

from  the  CIELuv1976  or  CIELab1976  colour  space.  Both  give  satisfying  results 

[paragraph 3.2].  The differences between both spaces have been discussed previously 

[paragraph 3.1.1.3], each having their own characteristics, but none perform better than 
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the other. The choice of the CIELuv1976 colour space can be preferred, since the visual 

noise formula has been implemented for the use of this colour space.

The limitation of the model is that it only evaluates the noise for uniform colour patches. 

That is why the S-CIELabDE2000 model has also been investigated for quantification of 

noise as a colour difference.

 6.2.2 Noise Quantification with the S-CIELabDE2000 Model

The model can evaluate spatially complex images. In this case, the threshold images are 

rectangular vertical  frequency patterns from a predefined colour with different  contrast 

levels. But since the evaluation is based on a colour difference, it needs a noise free image 

and a noisy image for comparison. In fact, the colour difference ΔE obtained between the 

noise-free image and the noisy image, is an error image. This stands for the "image of the 

noise pattern", and is then used to quantify the noise.

 6.2.2.1 Tool of the S-CIELabDE2000 Model

The S-CIELabDE2000 model has been implemented in Matlab®.

 6.2.2.2 Evaluation of the Threshold images with the S-CIElabDE200 Model

According to the results, the S-CIELabDE2000 model seems at first to perform quite well 

in  evaluating  the  spatially  complex  patterned  threshold  images  with  similar  colour 

difference values. But investigating further the colour difference in terms of the magnitude 

of the spatial patterns, and of the contrast, it can be noticed that the colour difference value 

is getting 1 ΔE unit higher when the contrast is increased to 20%. 

88



Chapter 6: Conclusion

So this is not matching the expectations, and this shows the limitations of the accuracy of 

the model to quantify colour difference in a visual  way for complex images.  But it  is 

interesting to notice that investigating the colour difference of the uniform colour patches, 

the model achieves similar colour difference values.

 6.2.3 Conclusion for both Models

To conclude, both models perform well in quantify the threshold images as uniform colour 

patches with similar values. Though it is limited to uniform colour surfaces, the algorithm 

used to simulate the processing of colours in the human visual system seems to be valid. If 

it is the case, this algorithm should be able to describe that the eye is more sensitive to 

luminance differences than for colour differences, chroma or hue.

 6.3 Does the human visual Algorithm used match the Eye's Sensitivity?

The noise quantification, with the human visual algorithm, has been scaled in terms of the 

noise input in luminance, chroma and hue (for the colours: red, green, blue, cyan, magenta 

and yellow).

 6.3.1 Eye's Sensitivity between Colours in term of Luminance, Chroma, and 

Hue

The ranking of the required noise input for the threshold image is compared to the ranking 

of the slope of the curves of the noise scaling. This is done for each kind of noise input 

channel between the colours. The ranking of the required noise input is considered as the 

reference.

For  luminance,  the  ranking  of  the  required  noise  input  is  too  similar  to  make  any 

significant  conclusions.  For  chroma,  the  ranking  of  the  curves'  slope  does  not  always 

match the ranking of the required noise input of the threshold images. In this case, the 
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algorithm can only be seen as a coarse description of the eye's sensitivity. For hue, the 

ranking of the curves' slope for the visual noise measurement almost matches the ranking 

of the required noise input for threshold images for all models. In this case the algorithm 

used in the visual noise measurement can describe the eye sensitivity for hue differences 

between the colours.

 6.3.2 Eye's  Sensitivity  between  Luminance,  Chroma  and  Hue  in  term  of 

Colour

The ranking of the required noise input for the threshold images is compared to the ranking 

of the slope of the curves of the noise scaling. This is done between the three kinds of 

noise input, for each colour. The ranking of the noise input is considered as the reference. 

The ranking of the slope of the noise scaling matches the ranking of the required noise 

input.  This  is  the  case  for  both  models  with  only  small  imprecisions,  the  Matlab® 

implementation of the visual noise measurement with the visual noise formula derived 

from Lab having the best results. It can be concluded that the algorithm can describe the 

sensitivity of the eye to interpret colour difference in terms of luminance, chroma and hue, 

for each specific colour depending on the hue of the colour.

 6.3.3 Brief conclusion

The eye's sensitivity depends on the hue of the colour. Although they are not being precise 

enough, these analyses show that  the algorithm describing the human visual system is 

valid, although it is still imprecise and can be improved.
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 6.4 Improvement of the Measurements and of the Method

 6.4.1 Improvement of the Measurements

Working with Shiraz in doing the experiments, it can be concluded that the scaling of the 

ΔE could still be improved [paragraph 3.2]. It has been noticed that, for noise input in the 

luminance  channel  the  threshold  image  are  never  more  than  ΔE=ΔL=1  and  that  the 

required  noise  input  for  the  threshold  images  are  all  very  similar  in  the  range  of 

ΔE=ΔL=0,4 to 0,6. So a maximum value of 2 for ΔE=ΔL would be sufficient and would 

allow the measurements to be more accurate, though the variance are already very small 

(up to 0,03).

While for the noise input in the chroma and hue channel, for few colours (for yellow and 

skin respectively), the slider has been set to the maximum value of ΔE=15. However, noise 

could not be perceptible yet, so we conclude that the maximum value could be set higher 

(set to ΔE=ΔC=Δh=20 or 25).

The way the experiments were conducted could be handled differently. This implies the 

question of the definition of the noise threshold. In this experiment, the observers were 

asked to choose the image in which they think the noise appears. They were free to shift 

the slider back and forth. Doing this they could get an impression of what the noise could 

look like. Other approaches could lead to different results.

One idea would be to build two viewing field in the program: one showing the noise input, 

and another showing a corresponding noise free image. Doing this the tested-persons could 

have a direct comparison and detect noise perhaps more easily. They would not have to 

rely on their memory, and should not have to shift the slider back and forth. Another idea 

would be that the slider should not be allowed to move back on an image with less noise. 

Doing  so  may  not  lead  to  determine  threshold  images  describing  the  just  noticeable 

difference, but maybe threshold images describing the just disturbing difference.
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 6.4.2 Improvement of the Human Visual Algorithm

For both models, the quantification of noise in a visual manner is only valid for uniform 

colour patches. And still there are some variations over the quantification of noise for the 

threshold images: they do not get exactly the same noise quantification. This can be due 

that the used human visual algorithm can not perfectly describe the human visual system, 

which is quiet complex and always adapting itself  to its environment. There are many 

factors, that are still uncertain:

Uncertainties for the used human visual algorithm itself:

– The contrast sensitivity function has not be standardized yet. As shown in figure 2.08 

[paragraph 2.4.2], the contrast sensitivity function changes its shape in terms of many 

parameters. So the contrast sensitivity function should be used and defined for specific 

parameters depending on the environment and the context.

– The  contrast  sensitivity  function  should  be  zero  for  the   zero  cycles-per-degree 

component. This corresponds to the DC-component since there is no spatial pattern and 

consequently no contrast. The DC-component contains essentially the mean value of 

the image channel and, for simple patches, this mean value is the value of the patch 

itself [20 p430]. So in order to keep the main information of the image contained in the 

DC-component,  the contrast  sensitivity  function has  been normalized to  1  for  zero 

cycle-per-degree. But this may not match the actual filtering occurring in the eye since 

there is no filtering occurring for zero cycles-per-degree. It could be suggested to apply 

the filtering in a different way  [37]: being in the frequency domain of the opponent 

colour signals, first the DC-component could be substracted, so it is set to zero. It can 

be then filtered with the contrast sensitivity function having an amplitude set to zero for 

the  component  zero  cycles-per-degree.  The  DC-component  could  be  added  back 

afterwards.

– As shown in appendix D, there are different proposed transform matrices for chromatic 

adaptation which differ slightly from one another. Which one to use depends on ones 

own purpose, because although the von Kries and the Bradford are recommended, there 

is no standardisation.
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– The same observation can be made for the use of the transformation matrix from the 

tristimulus values to the opponent colour space coordinates. There are several proposed 

matrices [paragraph 2.5.2] and [Appendix D2], some seem to be invalid (see results 

[Appendix D25]). But there are also no standardised recommendations for which one 

to use.

Uncertainties of the visual noise measurement model:

– the weights of the standard deviation of the L*u*v* visual noise formula: These have 

been determined with an empirical approach [paragraph 3.1.1] for the purpose of the 

visual noise measurement model. The settings of the experiments are unknown. So, 

like the contrast sensitivity function, these weightings may be defined for a specific 

environmental  setting  and  may  actually  vary  with  the  lighting  environment 

characteristic. So, depending on the context, the weighting may change and always be 

readjusted depending on the environment.

Uncertainties of the S-CIELabDE2000 model:

– According to the Luo et al's paper [23] the CIE has been improving the uniformity of 

the  CIELa*b*DE  formula.  The  stand  of  the  research  has  been  reached  with  the 

CIELabDE2000 formula until now.

– The CIELabDE formula contains the parametric weights KL, KC, KH [paragraph 4.1, 

formula 4.25], which can be adjusted to different viewing parameters such as textures, 

backgrounds, separations, etc... for the lightness, chroma, and hue components  [23]. 

For most imaging applications, these weights are unknown, and like in the present case, 

they should be all set to 1,0. Developing a better understanding of how to choose the 

right weights would maybe improve the accuracy of the quantification.

– The median value seems the most appropriate value in order to describe the observed 

visual noise. However, this may be only in this present case and for the same specific 

Gaussian pattern of noise. For another kind of noise, maybe another statistic would 

perform better.
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There is no doubt that a better and more precise cognition of the human visual system 

would  improve  the  human  visual  algorithm.  Consequently,  this  could  improve  the 

quantification  of  noise  matching  the  visual  impression.  However,  until  now,  this  new 

approach has been the most successful when compared to the former methods used.

Still,  the two models are  giving satisfactory results  only for the evaluation of uniform 

patches. The quantification of perception of noise in complex images is not yet suitable 

with the human visual algorithm used.
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Appendix A: Shiraz, Settings and Results for the Determination 

of the Threshold Images

A1. Shiraz, a Java® Application

A11. How to Install Shiraz

Refer to the diploma thesis work of and to Nicole Kidawa and Christina Simon [11 pp46-

49] in order to know how to install Shiraz

Shiraz has been written in the Java® programming language. To be able to run Shiraz, 

following Java® kits have to be installed first [11]:

– jdk1.3.1_01 or j2sdk1.4.10_06

– java3D

which can be downloaded from the website: Sun Microsystems, Sun Developer Network 

(SDN), Java Technology: http://java.sun.com. [15]

Shiraz can be installed anywhere on the computer.

Since the new version of Shiraz3, by doing the experiment of noise, the actual viewed 

image with noise can be saved directly as tiff by clicking the button "save as tiff". Their is 

no menu that opens to let the user choose the folder where it would like the images to be 

saved. That's why before doing the test, the user must ensure to set the folder where the 

images are going to be saved. This can be done as followed:

- go to the Shiraz3 folder, do a right click on the data "run.bat", then at the 7th line, type in 

the path of the folder were you would like the images to be saved, for example:

set dir="Z:\Shiraz39\images"
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Moreover the first time you want to run Shiraz3, you will maybe need to compile it once 

(but if you did not change anything in the code, you should not have to do it). First right 

click on the data "build.bat", at the 6th line type in the path where the commando "javac" 

should be  find,  this  should be in  the "bin"  folder  of  your  jdk_* folder  that  you have 

previously installed:

c:\Programme\Java\jdk1.3.1_01\bin\javac ... (the rest of the commando should 

stay unchanged).

At last in order to be able to run Shiraz3, you need to set the path where the commando 

"java" can be found: right click on the data "run.bat", at the 8th line, type in the path where 

the commando can be found, this should also be in the "bin" folder of your jdk_* folder 

that you have previously installed:

C:\Programme\Java\jdk1.3.1_01\bin\java ... (the rest of the commando should 

stay unchanged).

To start Shiraz3, you can just double click on the data "run.bat" or with the command 

window go in the folder where Shiraz is installed, and then just type the order „run“. The 

window of the Shiraz program should open.

A12. How to use Shiraz

Refer to the diploma thesis work of Michael Bantel and Jan Fischer  [10 pp-32-37 and 

pp71-78] and to the diploma thesis of Nicole Kidawa and Christina Simon [11 pp-50-58] 

in order to know how to use Shiraz.
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A2. Settings of the Shiraz Experiments

In order to determine a set of threshold images for uniform patches, an experiment has 

been run with Shiraz in the context of this diploma thesis.

The experiment conditions are based on the work of the diploma thesis of Michael Bantel 

and Jan Fischer [10 pp15-17 and pp42-45] and of the diploma thesis of Christina Simon 

and Nicole Kidawa [11 pp34-39]:

– dark room

– monitor : LCD from Eizo ColorEdge CG19 (highest ΔE over the monitor surface has 

been measured to be 2,4).

– calibration of the monitor : attention has been paid on the brightness, the value was set 

to 140cd/m²,  because higher value are much to bright for normal perception,  Tc = 

5000K, gamma = 2,2.

– Viewing distance: 60 cm

– Monitor resolution: 1280x 1024 pixels

– 16 persons have been asked to take part to the test

– threshold has been defined as a detection threshold (when the noise was just seen), the 

tested-persons were allowed to shift the slider back and forth before choosing their 

image threshold.

A3. Results of the Threshold Images measured with Shiraz

Blue stands for unpossible ΔE-values like 15 or 0, when noise was visible (it can be due to 

a mouse-click error). These values have just been thrown out of the analyse.

Red stands for a ΔE-value of 0 that has been replaced by a ΔE-value of 15, when no noise 

has been visible and the test person forgot to put the slider to the value for no noise ΔE=15.

Yellow stands for noise, that has been visible very soon, but the slider was left to a ΔE-

value of 0, so as default value ΔE=0,2 has been set.
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To generate the tiff threshold images in Shiraz3, the threshold values have been rounded to 

the first decimal.

Blue
ΔL: 0,4 0,6 0,2 0,2 0,8 0,2 0,4 0,2 0,6 0,4 0,4 0,4 0,4 0,4 0,2 0,4
Mean value: 0,39
Variance: 0,03

ΔC: 5,70 3,3 7,2 3,3 5,1  5,7 3,6 2,7 4,5 3,3 3,6 2,7 3 3 4,8
Mean value: 4,10
Variance: 1,80

Δh: 9,00 6 6 3,9 9 3,6 7,2 8,7 4,2 5,1 4,5 3,6 10,8 7,2 4,2 6
Mean Value: 6,19
Variance: 5,07

Brown
ΔL: 0,60 0,8 0,4 0,6 0,8 0,2 0,4 0,6 0,4 0,8 0,6 0,4 0,6 0,4 0,2 0,2
Mean value: 0,50
Variance: 0,04

ΔC: 4,20 6,3 4,5 2,7 5,4 1,8 4,5 6,6 3,9 4,2 3,6 5,4 5,7 4,8  2,7
Mean Value: 4,42
Variance: 1,84

Δh: 5,70 5,7 6 3,3 8,4 3,9 9,3 10,2 6,9 7,8 5,7 6,9 9,3 6,3  3,3
Mean value: 6,58
Variance: 4,60

Cyan
ΔL: 0,60 0,8 0,2 0,6 0,8 0,2 0,4 0,6 0,2 0,6 0,6 0,4 0,6 0,4 0,4 0,6
Mean value: 0,50
Variance: 0,04

ΔC: 5,70 6 4,8 7,2 5,4 3 7,2 7,8 2,4 1,2 4,8 6  6,6  4,5
Mean value: 5,19
Varianz: 3,68

Δh: 7,80 15 7,2 8,4 11 15 14 13,2 11,1 15 9,9 13,2 11,1 15 2,7 9
Mean value 11,16
Variance: 12,71

Dark grey
ΔL: 0,60 0,8 0,4 0,6 0,6 0,2 0,6 0,4 0,6 0,6 0,6 0,4 0,4 0,6 0,4 0,4
Mean Value: 0,51
Varianz: 0,02

ΔC: 5,40 6 6 4,5 4,8 1,2 4,5 6,3 4,8 5,4 5,4 5,1 3,3 3,9 1,8 3,3
Mean Value: 4,48
Variance: 2,14

Delta Phi: 14,70 15 15 15 14 15 15 15 12,3 15 11,1 15 15 15 15 15
Mean value: 14,48
Variance: 1,36

Dark violet
ΔL: 0,60 0,6 0,2 0,4 0,6 0,2 0,4 0,4 0,6 0,6 0,4 0,2 0,4 0,6 0,2 0,2
Mean value: 0,41
Variance: 0,03

ΔC: 9,30 7,5 6 6 4,5 3 7,5 11,4 10,2 11,7 6,6 4,8 6,9 3,9 4,2 6
Mean value: 6,84
Variance: 6,99
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Δh: 9,60 7,8 3 4,2 6,9 2,1 6,3 8,4 9,9 7,5 6 6,3 6,3 5,7 2,1 6,6
Mean value: 6,17
Variance: 5,54

Yellow
ΔL: 0,60 0,6 0,2 0,6 0,4 0,2 0,6 0,6 0,4 0,8 0,6 0,6 1 0,6 0,4 0,6
Mean Value: 0,55
Variance: 0,04

ΔC: 15,00 15 15 15 8,4 15 15 15 3,9 15 9,6 6 6,9 12,3 12 15
Mean value: 12,11
Variance: 15,15

Δh: 6,90 6,9  4,2 4,2 3 6,3 7,8 5,4 6 7,5 6,6 6,9 7,8 2,7 5,7
Mean value: 5,86
Variance: 2,72

Skin1
ΔL: 0,60 0,6 0,2 0,6 0,6 0,2 0,4 0,6 0,4 0,4 0,2 0,4 0,6 0,4 0,2 0,4
Mean value: 0,43
Variance: 0,03

ΔC: 4,50 3,6  2,1 3,3 4,5 6,9 4,8 3,9 5,4 3,3 3 3,3 2,7 3,6
Mean value: 3,92
Varianz: 1,50

Δh 15,00 15 15 8,1 7,8 6 15 15 15 15 8,7 15 7,5 15 10 15
Mean value: 12,39
Variance: 12,72

Skin2
ΔL: 0,40 0,6 0,2 0,6 0,4 0,2 0,6 0,4 0,2 0,6 0,6 0,2 0,8 0,4 0,4 0,2
Mean value: 0,43
Variance: 0,04

ΔC: 5,70 4,2  2,4 1,5 1,2 4,2 5,4 3,6 5,4 4,2 2,7 3,9 2,4 2,7 2,7
Mean value: 3,48
Variance: 1,95

Δh: 15,00 7,8 6 7,8 6 5,7 15 15 15 15 7,2 15 15 15 7,8 11
Mean value: 11,21
Variance: 16,70

Light grey
ΔL 0,60 0,8 0,2 0,4 0,4 0,2 0,6 0,6 0,4 0,6 0,6 0,4 1 0,4 0,2 0,4
Mean value: 0,49
Variance: 0,05

ΔC: 6,00 4,8  4,5 4,5 0,9 2,7 4,8 3,6 4,5 4,5 1,8 5,4 5,1 5,1 2,4
Mean value: 4,04
Variance: 2,11

Δh: 15,00 15 15 15 9,3 15 15 15 15 15 9 15 15 15 14 13
Mean value: 14,04
Variance: 4,07

Magenta
ΔL: 0,60 0,4 0,2 0,4 0,4 0,2 0,4 0,6 0,2 0,6 0,4 0,2 0,6 0,4 0,2 0,4
Mean value: 0,39
Variance: 0,02

ΔC: 6,90 4,8 4,8 2,1 5,7 3 8,4 10,8 9 8,1 4,8 5,4 5,4 4,2 1,2 4,8
Mean value: 5,59
Variance: 6,49

Δh: 4,80 3,6 3 0,9 1,8 1,2 3,9 5,1 2,7 3,9 1,8 3,6 2,7 2,4 1,5 2,1
Mean value: 2,81
Variance: 1,57
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Mid-blue
ΔL 1,00 0,8 0,2 0,4 0,6 0,2 0,6 0,8 0,6 0,6 0,6 0,8 0,4 0,6 0,6 0,4
Mean value: 0,58
Variance: 0,05

ΔC: 8,40 5,1 7,5 2,7 3,3 1,5 6,6 5,7 4,2 6 4,8 4,8  2,4 9 2,7
Mean value: 4,98
Variance: 5,08

Δh: 5,40 4,5 5,4 2,1 3 1,2 3,9 4,8 5,4 5,1 3,3 2,7 5,1 4,8 3 2,4
Mean value 3,88
Variance: 1,85

Mid-green
ΔL: 0,60 0,4 0,2 0,4 0,4 0,2 0,6 0,8 0,4 0,4 0,6 0,4 0,6 0,4 0,2 0,2
Mean value: 0,43
Variance: 0,03

ΔC: 7,80 15 15 15 10 5,7 9,6 12,6 15 15 5,7 6,6 10,8 11,1 6,9 6,6
Mean value: 10,54
Variance: 13,58

Δh: 7,20 6,3 7,5 7,5 7,5 1,5 7,5 7,5 6,3 5,4 4,8 4,2 6,3 4,5 3 5,7
Mean value: 5,79
Variance: 3,26

Orange
ΔL: 0,60 0,4 0,2 0,4 0,6 0,2 0,6 0,6 0,4 0,6 0,6 0,4 0,6 0,4 0,2 0,2
Mean value 0,44
Variance: 0,03

ΔC: 8,10 9 6,6 8,1 7,5 3 10 12,6 6 8,4 5,4 4,8 6,6 6,6 3 6
Mean value: 6,99
Variance: 6,14

Δh: 6,00 7,8 7,2 3,6 7,5 2,7 8,1 10,2 3,9 7,8 6,6 5,1 7,5 5,7 2,4 5,7
Mean value: 6,11
Variance: 4,64

Pastel
ΔL: 0,60 0,6 0,4 0,4 0,2 0,2 0,6 0,6 0,4 0,6 0,6 0,4 0,6 0,2 0,2 0,4
Mean value: 0,44
Variance: 0,03

ΔC: 5,40 4,5 4,8 2,4 3,3 1,2 3,9 5,7 2,7 6,3 3,9 5,1 4,8 4,5 2,7 1,8
Mean value: 3,94
Variance: 2,15

Δh: 12,90 15 15 15 8,4 15 15 15 15 15 9,3 15 15 15 7,2 15
Mean value 13,61
Variance: 7,37

Red
ΔL: 0,80 1 0,4 0,6 0,2 0,2 0,6 0,8 0,8 0,6 0,4 1,2 1,2 0,4 0,4 0,4
Mean value: 0,63
Variance: 0,10

ΔC: 4,20 7,2 3 3 2,7 1,5 5,7 6,3 4,8 4,8 4,8 4,8 4,2 4,8 3,9 2,7
Mean value: 4,28
Variance: 2,14

Δh: 10,80 4,5 7,5 4,8 9,3 3,9 13 11,4  9,3 7,2 6,3 12,6 5,7 6,9 6
Mean value: 7,92
Variance: 8,47
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Appendix B: Settings of the Photoshop® Plugin, Visual Noise 

Measurement

A description of how to use the Photoshop® plugin Noise Measurement is explained in the 

following literature: Noise Measurements Plug-in, ver. 1.20 User's Guide, November 8th,  

1999, Konica Corporation [16].

Here it is just describe how to install and use the plugin for the purpose of this diploma 

work:

B1. How to install the Plugin

The noise-measurements.8BF data has to be installed, copied, in the following folder of the 

computer:

C:\Programme\Adobe\PhotoshopCS\Plug-Ins\noise_measurements

B2. How to run the Plugin

The plugin runs as follow in Photoshop®:

– open the tiff image, that is in an RGB Mode (otherwise the filter will not work)

Although there is no need to care about the actual monitor-colormanagement, attention has 

to  paid  on the colour  settings  of  the  software  Photoshop®, the  tiff  files,  generated in 

Shiraz, are untagged, so first a profile has to be assigned: the monitor calibration profile, 

Monitor_25.01.2006_1.icc, this profile sets RGB colour values that the test-subjects saw.
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The Photoshop® noise  measurement  plugin  algorithm has  been  defined  for  the  sRGB 

profile  (see  more  about  filter  settings) sRGB-IEC61966-2.1.icc.  So  we  assume,  that 

although the  filter  algorithm has  been  calculated  for  the  specific  colour  profile  sRGB 

IEC61966-2.1.icc, the monitor profile, which is also an RGB profile could be equivalent to 

sRGB  IEC61966-2.1.icc.  That  the  two  profiles  are  similar  can  be  checked  with  the 

Macintosh® tool Colorsync®.

The transparent space corresponds to  the sRGBprofile and the colour-filled one to the 

Monitor_25.01.2006_1.icc profile. On the 3D representation of the two colour profiles, it 

can be seen that the white and black points are on the same spots.

Figure B.01: Representation in ColorSync® of the gamut of the profile   sRGB IEC61966-2.1.icc   (transparent)   

and   Monitor_25.01.2006_1.icc   (full colour).  

They also have the same shape, the only differences are that the Monitor_25-01-06_1.icc is 

a little bigger in the greens and much smaller in the blues and magentas.
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The tagged RGB images with the monitor profile  Monitor_25.01.2006_1.icc are filtered 

with the algorithm defined for the sRGB profile.

– select with the rectangle tool the area, which has to be measured.

– go to the menu [Filter][Iso Standards][Noise Measurements]

– Settings of the Noise Measurements Filter : the following window appears:

Figure B.02: Window of the settings of the Photoshop® plugin, Noise measurements for ISO 15739.

– The viewing distance is taken from the Michael Bantel and Jan Fischer's [10 p44] test 

conditions: the minimal distance was calculated to 60 cm and the maximum distance to 

100cm. So first an average fixed distance of 82cm has been choosen. But after a few 

pretest it was noticed that the test persons has the tendency to come nearer to the screen 

during the test, so that why the persons were then setted at 65 cm.

– The resolution is based on the monitor resolution: 72dpi.
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– The test chart had to be defined here, the defaults settings of the plug-in are defined for 

an OECF charts. So according to the instructions in the User's Guide  [16],  the test 

Chart's reference has to be defined as a text file (Text Editor®), which defined the 

position of the fields, that must be measured. Here the noise measurement takes place 

only for one colour field per image, so there is only one field to define in the text file. 

Refer to the text file ISO_chart_pos_Schiraz.txt to find the position syntax of the field 

for the measurement of the Shiraz images:

50.0<TAB>50.0<CR>

– Sampling  Number:  64  stands  for  a  measurement  over  64x64  pixels  field.  The  tiff 

images generated in Shiraz are 300x200 pixels. So 128 is chosen to get a measure for 

the  larger  pixel  field  possible  in  order  to  average  any  possible  pixel  errors  in 

comparison to the smaller sampling number 64, and because a field of 256x 256 pixels 

would have been to wide in the heigth.

– The settings of the parameter describe the filter  [16 pp11-13]. The algorithms of the 

noise-measurement filter are defined in a text file. It sets the white point (depending on 

the  profile),  the  colour  transformation  for  the  adaptive  colour  space,  the  colour 

transformation for the opponent colour space, the code for the uniform colour space 

(Lab or Luv) and their corresponding noise weighting values, and at last the colour 

based spatial filtering. These parameters aim to describe the colour perception of the 

eye. They can be changed in a new text file. Here the default text-file parameter is 

used, because its white point is defined for the sRGB profile.

– After the filter setting, the image is filtered, the results can to be saved in a text file or 

an Xcel® file.
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Appendix C: User Guide Chinon

C1. How to run Chinon, a Matlab® Application

C11. If you have a Matlab® Version with the Image Processing Toolbox

You can directly run Chinon:

– install the chinon folder on your computer.

– add first the  chinon folder to the path: [File] [Set Path] [Add with subfolders] and 

browse.

– Then just type the order „chinon“ in the command line.

– Then just follow the instructions.

C12. If you do not have a Matlab® version

C121. First copy the Chinon Folder anywhere on your Computer

The chinon folder contains following data:
– MCRInstaller.exe data

– chinon.exe data

– chinon.ctf data

– source folder

C122. Installation

– first install the application of Matlab® in order to be able to run chinon then. So double 

click on MCRInstaller.exe and follow the instructions.

– Then go in the folder chinon and double click on the chinon.exe data. It should then 

run the programm Chinon. A command window should open, but do not worry about.

– the source folder contains the code of the chinon programm in the Matlab® so called 

m.file.

11



Appendix C: User Guide Chinon

C2. How to use Chinon

C21. Settings of Chinon

After double click on chinon.exe, the following window should open:

Figure C.01: window of the settings of the Chinon programm.
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Enter your settings:

Setting 1: the results of the measurement of Chinon are reported in an Excel® table, which 

is created automatically in the current folder of Chinon. 

Setting 2: if the Excel® table already exists and you want to add some new measurements 

as worksheet, just enter a new name for the worksheet, while keeping the same name for 

the Excel® table. Still the report will occur in the current folder of Chinon.

Setting 3: refer to chapter 2  [paragraph 2.5.2]  (step 9 of the human visual algorithm). 

Here you have to choose with which model, you want your image be evaluated. Keep in 

mind that the S-CIELabDE2000 model requires a noisy image and its corresponding noise 

free image. A spatially complex frequency pattern can be present in the image data. While 

the visual  noise measurement  model  requires only one noisy image,  but  the evaluated 

image must be a uniform patch.

Setting 4: refers to chapter3 [paragraph 3.1.1], this only apply if you choose to evaluate 

your images with the visual noise measurement model.

Setting 5 to 10: refers to chapter 2 [paragraph 2.5.2] (step5). Here you need to enter the 

setting of your experiment or the use of your image, from which depends the smallest 

resolvable pattern.

Setting 11: for experiment you may need to evaluate many images, so you can choose if 

you would like to do a single image processing or a batch processing of your images. 

When you choose the single process, while running Chinon will display the image you 

have chosen

After choosing all the settings, click on „OK“. First another window will open and ask to 

choose  the  profile  that  is  embedded  in  your  images.  You  can  brows  through  your 

computer. Then another window will open asking you to choose the image with noise or 

the folder containing the noisy images, depending on which process you choose to evaluate 

your images. 
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For the batch process be sure that all the images you want to be evaluate are all in the same 

folder. Then if you have choose to evaluate your images with S-CIELabDE2000 model 

another window will open and ask you to choose the image or the folder of your noise free 

image.  In  the  last  case,  be  sure  that  you have  the  same number  of  noisy images  and 

corresponding noise free images in both folders and inside the folder in the same order.

C22. How Chinon returns the Results

After chinon evaluates your image you can open your Excel® table, which lays in the 

current folder of chinon. 

Figure C.02: figure of how the results of the evalutation of the images with Chinon are reported in the table 

Excel  ®  .  

Notice that the previously set parameters in the window chinon has been reported in the 

Excel®  Table.  Depending  on  the  chosen  model,  the  visual  noise  value  or  the  colour 

difference as mean, variance, standard deviation, median or maximlum error values have 

been reported adverse to the images' name.
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Referring to point 1 and 2, for instance in this case (figure C.02) the results have been 

reported  in  an  already  existing  Excel  table  named  „test“  in  a  new  worksheet  named 

„test_scie_batch“.

C23. Notice to avoid any Problems while running Chinon

– Make sure that your image is a RGB data file and that it has a tiff or jpeg format.

– Do not forget to close your Excel® table if you want a worksheet to be added to it, 

otherwise while running chinon will ask you if you would like to replace you entire 

Excel® table.

– Be careful by naming your profile, Matlab does not allow any data name with any 

symbol like dot or semicolon (this apply also when you enter a Excel and a worksheet 

name). Make sure that you have a valid data ending with *.icc or *.icm.
– At the points 3, 4, 6 and 11, you are asked to choose between either way, be sure that 

you enter  the  asked  option  as  it  is  spelled  between the  quotation  mark,  otherwise 

Chinon will not run.
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Appendix D: Colour Transformation Matrices

D1. Chromatic Adaptation Matrices to transfer the Tristimulus Values, 

X, Y and Z into the Cone Space L, M, and S

D11. von Kries Matrix

• p109 : ICC.1:2001-12, File Format for Color Profiles (Version 4.0.0)

http://www.color.org/newiccspec.pdf

• Measuring Colour, R.W.G. Hunt, Ellis Horwood, Series, Applied Science and Industrial  

Technology, (p71) [4]

M von Kries = [ 0,40024 0,70760 −0,08081
−0,22630 1,16532 0,04570

0,0 0,0 0,91822 ] (D1.01_1)

It  exists another variant of the von Kries matrix, which is slightly different as the one 

above.

• Principles of Colour Technology, Billmeyer and Saltzman's, Roy S. Berns, 3rd Edition,  

John and Wiley, 2000 (pp204-205)[5]

M von Kries = [ 0,3897 0,6890 −0,0787
−0,2298 1,1834 0,04640
0,0000 0,0000 1,0000 ] (D1.01_2)

This matrix is used in the algorithm of the model of the visual system.
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D12. Smith-Porkony cone space matrix

• Human Color Vision, 2nd Edition,Peter K.Kaiser and Robert M.Boyton, Optical Society  

of America (p557) [13]

M Smith Porkony = [ 0,15516 0,54308 −0,03287
−0,15516 0,45692 0,03287

0,0000 0,0000 0,01608 ] (D1.02)

D13. Bradford Transformation

• The Reproduction of Colour, R.W.G. hunt, Sixth Edition, John Wiley and Sons Ltd, West  

Sussex, England, 2004.p590 [7]

• Colour Appearance Model, Fairchild Mark. D., Addison Wesley Longman, Inc (1998,  

p379) [3]

The chromatic  adaptation  Bradford  transform is  a  modified  von  Kries  transformation, 

which uses some a set of responses R, G, B based on the eye's sensitivity curves, but unlike 

the  cone  responses  L,  M,  S,  they  have  some  negative  spectral  values.  Moreover  an 

exponential non-linearity has been added to short-wavelength sensitive channel.

M Bradford = [ 0,8951 0,2664 −0,1614
−0,7502 1,7135 0,0367
0,0389 −0,0685 1,0296 ] (D1.03)

Using linear transform matrices (like von Kreis transform), reference and test states are 

interchangeable. Using matrices with non-linear factor (like Bradford transform) care must 

be taken by interchanging the reference with the tests. Actually the Bradford chromatic-

adaptation transform is used to go from the source viewing conditions to the reference 

viewing conditions.
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D14. The Hunt-Pointer-Estevez Transformation

• Fairchild, Mark D. 2005 : Color Appearance Models, second edition, John Wiley & 

Sons, Chichester, West Sussex (p379). [3] 

The Bradford responses are not physiologically plausible cone responsivities (they have 

negative  values  at  many  wavelengths),  that  is  why the  Bradford  chromatic  adaptation 

transform  is  then  scaled  to  the  Hunt-Pointer-Estevez  cones  responses,  prior  to  the 

application of a non linear response compression.

M Hunt Pointer Estevez = [ 0,38971 0,68898 −0,07868
−0,22981 1,18340 0,04641

0,0000 0,0000 1,0000 ] (D1.04)

As we can notice the Hunt-Pointer-Estevez chromatic adaptation transform is very similar 

to the von Kries Transformation.

D15. the CIECAM02 Matrix

Color appearance Model, Mark D. Fairchild, Second Edition, Wiley and Sons, 2005 West  

Sussex (p268) [3]

M CIE CAM02 = [ 0,7238 0,4296 −0,1624
−0,7036 1,6975 0,0061

0,003 0,0136 0,9834 ] (D1.05)
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Appendix D: Colour Transformation Matrices

D16. Evaluation of the Matrices

Related  to  step  2  of  the  human  visual  algorithm  [paragraph  2.5.2],  the  chromatic 

adaptation matrix must be chosen. To do so the LMS coordinates of a white image are 

calculated with the different matrices.

Table D1.01: cone space coordinates of a white image, tested with the different transformation matrices from 

the tristimulus values to the cone space responses.

Cone 
coordinates

Matrix A1.01_1 Matrix A1.01_2 Matrix A1.02 Matrix A1.03 Matrix A1.05

L 1,0127 0,98605 0,6601 0,9647 0,96264

M 0,99267 1,0081 0,3405 0,9901 0,98668

S 0,91824 1 0,01608 1,0084 0,99626

The  criteria  for  choosing  the  Matrix  A1.01_2  rather  than  the  others  is  that  the  cone 

coordinates for a white should be all equal and reaching their maximum toward the value 

of 1.
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D2. Matrix Transforms from the Tristimulus Values to the Opponent Colour Space Coordinates.

D2.  Matrix  Transforms  from  the  Tristimulus  Values  to  the 

Opponent Colour Space Coordinates.

D21. Matrix from the Photoshop® Plugin

This matrix is proposed in the text data of the default parameters used in the Photoshop® 

plugin [16].

M opposite = [0,0 1,0 0,0
1,0 −1,0 0,0
0,0 0,4 −0,4] (D2.01)

This  matrix  has  been  used  in  the  algorithm of  the  model  of  the  visual  system in  the 

Photoshop® plugin as well as in Chinon.

From the literatures  [17] [18] that describe the visual noise measurement, there are two 

other different matrices, that have been proposed, but which do not issue realistic values 

for opponent colour space coordinates.

D22. Matrix from the Konica® paper

This matrix is proposed in the Konica® paper from Hung et al [17].

M opposite = [1,0 1,0 0,0
0,0 0,4 −0,4
0,0 1,0 0,0 ] (D2.02)
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D2. Matrix Transforms from the Tristimulus Values to the Opponent Colour Space Coordinates.

D23. Matrix from the Photoshop® Plugin User Guide

This matrix is proposed in the Photoshop® plugin user Guide [18].

M opposite = [0,0 1,0 0,0
1,0 −1,0 0,0
0,0 0,4 0,4] (D2.03)

D24. Matrix from the S-CIELabDE2000 Paper

This matrix is proposed by Faichild; Mark D. in his S-CIELabDE2000 paper [20].

M opposite = [ 0,297 0,72 −0,107
−0,449 0,29 −0,077
0,086 −0,59 0,501 ] (D2.04)

This matrix issues quiet realistic results for the opponent colour space coordinates, but 

does not perform as good as the matrix 2.01.
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D2. Matrix Transforms from the Tristimulus Values to the Opponent Colour Space Coordinates.

D25. Evaluation of the Matrices

Related to step 3 of the human visual algorithm  [paragraph 252], the opponent colour 

matrix must be chosen. To do so the opponent colour coordinates of a white image are 

calculated with the different matrices.

Table D2.01: opponent coordinates of a white image, tested with the different transformation matrices from the 

tristimulus values to the opponent space responses.

Opponent 
coordinates

Matrix D2.01 Matrix D2.02 Matrix D2.03 Matrix D2.04

A 0,9999 1,9643 0,99987 0,89933

C1 -0,035529 -0,00004855 -0,035407 -0,2201

C2 -0,000047553 0,99987 0,80004 -0,0058585

The criteria for choosing matrix D2.01, was that the coordinates of a white in the opponent 

colour space, should have a high value in the achromatic channel, but also both chromatic 

coordinates going both toward the vaolue of zero.
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Appendix E: Visual Noise Scaling with the Human Visual Algorithm

Appendix  E:  Visual  Noise  Scaling  with  the  Human  Visual 

Algorithm

E1.  Results  for  the  Visual  Noise  Measurement  Model  with  the 

Photoshop® Plugin and Chinon with the Lab formula,  and for the S-

CIELabDE2000 model.

In paragraph 5.1, the noise scaling with the model S-CIELabDE2000 was determined as 

the noise input along the luminance, chroma and hue channel in function of the S-ΔE2000 

median value, because according to the former results [paragraph 4.2.3.1] the S-ΔE2000 

median value is performing better. According to the results, the S-ΔE2000 mean, variance, 

standard deviation and median value are giving satisfying and similar results as well, that 

is  why  the  noise  scaling  was  althoug  made  as  the  noise  input  in  function  of  these 

grandeurs. Doing so it  could be notice that the noise scaling with the  S-ΔE2000 mean 

value is similar to the scaling of the noise with the S-ΔE2000 median value.
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Appendix E: Visual Noise Scaling with the Human Visual Algorithm

E11.Noise Scaling along the Noise Input LCh for the Colours:  Red,  Green, 

Blue, Cyan and Blue.

E111. Noise Input in the Luminance Channel.

Graph  E1.01:  Visual  noise  value  from  the  Photoshop®  plugin  in  function  of  the  noise  input  along  the 

luminance channel:

Graph E1.02: Visual noise value from Chinon with the Lab formula in function of the noise input along the 

luminance channel.
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Appendix E: Visual Noise Scaling with the Human Visual Algorithm

Graph E1.03: colour difference    S-ΔE2000    as median value in function of noise input along the luminance   

channel.

E112. Noise Input in the Chroma Channel

Graph E1.04: Visual noise value from the Photoshop® plugin in function of the noise input along the chroma 

channel.
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Appendix E: Visual Noise Scaling with the Human Visual Algorithm

Graph E1.05: Visual noise value from Chinon with the Lab formula in function of the noise input along the 

chroma channel.

Graph E1.06:   colour  difference    S-ΔE2000    as  median  value  in  function  of  noise  input  along  the  chroma   

channel.
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Appendix E: Visual Noise Scaling with the Human Visual Algorithm

E113. Noise input in the Hue Channel.

Graph E1.07: Visual noise value from the Photoshop® plugin in function of the noise input along the hue 

channel.

Graph E1.08: Visual noise value from Chinon with the Lab formula in function of the noise input along the hue 

channel.
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Appendix E: Visual Noise Scaling with the Human Visual Algorithm

Graph E1.09:   colour difference   S-ΔE2000   as median value in function of noise input along the hue channel  .
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Appendix F: Investigation of the S-CIELabDE2000 Model.

Appendix F: Investigation of the S-CIELabDE2000 Model.

Here the results of the experiments related to paragraph 4.2.2 are reported for the colours: 

cyan, red, light grey, and mid-green. Each colour has a rectangular frequency pattern of 

either 4, 6 or 10 pixels and each a contrast of either 3, 10 or 22%.So there are 9 different 

patterns of contrast and frequency for each colour.

F1. Cyan

Table F1.01: median value of the colour difference over the pixels   for noise input in the luminance, chroma,   

and hue channel for each of the 9 patterns of contrast and frequency for the colour cyan.

frequency 

in pixels 

pro cycle

contrast in 

%

noise input 

ΔL

S-ΔE200 

median

noise input 

ΔC

S-ΔE200

median

noise input 

Δh

S-ΔE200

median

4 3 0,86 1,00 6,92 1,61 15 0,87

6 3 0,82 1,00 7,22 1,69 15 0,87

10 3 0,80 1,00 6,78 1,61 14,86 0,86

4 10 1,16 1,61 8,44 2,21 14,98 0,94

6 10 1,08 1,39 8,47 2,30 14,54 0,93

10 10 0,95 1,32 7,09 1,85 14,39 0,92

4 22 1,49 1,64 10,26 2,60 15 1,13

6 22 1,5 1,85 9,7 2,44 14,88 1,14

10 22 1,21 1,50 8,46 2,16 14,79 1,13
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Appendix F: Investigation of the S-CIELabDE2000 Model.

F2. Red

Table F1.01: median value of the colour difference over the pixels   for noise input in the luminance, chroma,   

and hue channel for each of the 9 patterns of contrast and frequency for the colour red.

frequency 

in pixels 

pro cycle

contrast in 

%

noise input 

ΔL

S-ΔE200 

median

noise input 

ΔC

S-ΔE200

median

noise input 

Δh

S-ΔE200

median

4 3 0,81 1,24 5,39 0,69 9,61 1,55

6 3 0,89 1,24 5,83 0,72 10,6 1,71

10 3 0,8 1,23 6,18 0,79 10,15 1,69

4 10 1,08 1,60 6,64 0,93 11,1 1,97

6 10 1,03 1,65 6,67 0,95 11,46 2,06

10 10 0,95 1,70 6,12 0,89 10,11 1,89

4 22 1,48 1,96 7,73 1,28 11,57 1,93

6 22 1,42 2,01 7,99 1,26 12,61 2,05

10 22 1,12 1,81 6,54 1,11 11,72 1,95

F3. Mid-green

Table F1.01: median value of the colour difference over the pixels   for noise input in the luminance, chroma,   

and hue channel for each of the 9 patterns of contrast and frequency for the colour mid-green.

frequency 

in pixels 

pro cycle

contrast in 

%

noise input 

ΔL

S-ΔE200 

median

noise input 

ΔC

S-ΔE200

median

noise input 

Δh

S-ΔE200

median

4 3 0,82 1,09 11,61 1,31 6,78 0,96

6 3 0,87 1,09 12,86 1,44 8,28 1,16

10 3 0,71 1,09 11,60 1,30 8,27 1,15

4 10 1,18 2,02 13,56 2,21 8,69 1,85

6 10 1,2 1,82 12,55 1,88 9,31 1,83

10 10 0,88 1,32 12,90 2,03 8,03 1,69

4 22 1,53 1,90 13,33 1,59 9,85 1,44

6 22 1,50 1,88 13,44 1,62 9,22 1,37

10 22 1,16 1,48 13,63 1,63 9,35 1,39
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Appendix F: Investigation of the S-CIELabDE2000 Model.

F4. Light grey

Here we only report the values for noise input in luminance.
Table F1.01: median value of the colour difference over the pixels   for noise input in the luminance, chroma,   

and hue channel for each of the 9 patterns of contrast and frequency for the colour light-grey.

frequency in 

pixels pro 

cycle

contrast in 

%

noise input 

ΔL

S-ΔE200 

median

4 3 0,81 1,08

6 3 0,90 1,08

10 3 0,75 1,07

4 10 1,13 1,50

6 10 1,15 1,51

10 10 1,16 1,04

4 22 1,52 1,85

6 22 1,52 1,60

10 22 0,88 1,48

F5. Mid-green

Table F1.01: median value of the colour difference over the pixels   for noise input in the luminance, chroma,   

and hue channel for each of the 9 patterns of contrast and frequency for the colour mid-green.

frequency 

in pixels 

pro cycle

contrast in 

%

noise input 

ΔL

S-ΔE200 

median

noise input 

ΔC

S-ΔE200

median

noise input 

Δh

S-ΔE200

median

4 3 0,82 1,09 11,61 1,31 6,78 0,96

6 3 0,87 1,09 12,86 1,44 8,28 1,16

10 3 0,71 1,09 11,60 1,30 8,27 1,15

4 10 1,18 2,02 13,56 2,21 8,69 1,85

6 10 1,2 1,82 12,55 1,88 9,31 1,83

10 10 0,88 1,32 12,90 2,03 8,03 1,69

4 22 1,53 1,90 13,33 1,59 9,85 1,44

6 22 1,50 1,88 13,44 1,62 9,22 1,37

10 22 1,16 1,48 13,63 1,63 9,35 1,3
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